SUMMARY REPORT

112 DOGWOOD DRIVE (FORMERLY 477 DOGWOOD DRIVE)

LAUREL BAY MILITARY HOUSING AREA

MARINE CORPS AIR STATION BEAUFORT

BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095 SUMMARY REPORT

112 DOGWOOD DRIVE (FORMERLY 477 DOGWOOD DRIVE)

LAUREL BAY MILITARY HOUSING AREA

MARINE CORPS AIR STATION BEAUFORT

BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016

CTO WE52

JUNE 2021

Table of Contents

1.0 1.1 1.2	Backgroun	NTRODUCTION				
2.0	SAMPLING	SAMPLING ACTIVITIES AND RESULTS				
2.2 3.0	SOIL ANALY	ZTICAL RESULTS 4 STATUS 4				
4.0		ES4				
Table	1	Table Laboratory Analytical Results - Soil Appendices				
Appen Appen Appen	dix B	Multi-Media Selection Process for LBMH UST Assesment Reports Regulatory Correspondence				

List of Acronyms

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CTO Contract Task Order

COPC constituents of potential concern

IDIQ Indefinite Delivery, Indefinite Quantity

IGWA Initial Groundwater Assessment

JV Joint Venture

LBMH Laurel Bay Military Housing MCAS Marine Corps Air Station

NAVFAC Mid-Lant Naval Facilities Engineering Command Mid-Atlantic

NFA No Further Action

PAH polynuclear aromatic hydrocarbon

QAPP Quality Assurance Program Plan

RBSL risk-based screening level

SCDHEC South Carolina Department of Health and Environmental Control

Site LBMH area at MCAS Beaufort, South Carolina

UST underground storage tank

VISL vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 112 Dogwood Drive (Formerly 477 Dogwood Drive). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan (QAPP) for the Underground Storage Tank Management Division, Revision 3.1* (SCDHEC, 2016) and the *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service,* (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Division (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 112 Dogwood Drive (Formerly 477 Dogwood Drive). Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 477 Dogwood Drive* (MCAS Beaufort, March 2015) and *SCDHEC UST Assessment Report – 477 Dogwood Drive* (MCAS Beaufort, July 2015). The UST Assessment Reports are provided in Appendix B.

2.1 UST Removal and Soil Sampling

Two 280 gallon heating oil USTs were removed at 112 Dogwood Drive (Formerly 477 Dogwood Drive). Tank 1 was removed on October 13, 2014, from the landscaped area adjacent to the concrete porch. Tank 2 was removed on February 3, 2015, from the to the concrete porch area. The UST locations are indicated on Figures 1 and 2 of the UST Assessment Reports (Appendix B). The USTs were removed and properly disposed of (i.e., shipped offsite for recycling or transported to a landfill). There was no visual evidence (i.e., staining or sheen) of

petroleum impact at the time of the UST removals. According to the UST Assessment Reports (Appendix B), the depth to the bases of the USTs were 4'4" (Tank 1) and 5'8" (Tank 2) bgs and a single soil sample was collected for each from that depth. The samples were collected from the fill port side of the former USTs to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of the excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data reports are included in the UST Assessment Reports presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 112 Dogwood Drive (Formerly 477 Dogwood Drive) were less than the SCDHEC RBSLs, which indicated the subsurface was not impacted by COPCs associated with the former UST at concentrations that presented a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Based on the analytical results for soil, SCDHEC made the determination that NFA was required for 112 Dogwood Drive (Formerly 477 Dogwood Drive). This NFA determination was obtained in letters dated July 1, 2015 and August 3, 2016 (Tank 2). SCDHEC's NFA letters are provided in Appendix C.

4.0 REFERENCES

Marine Corps Air Station Beaufort, 2015. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report – 477 Dogwood Drive, Laurel Bay Military Housing Area, March 2015.

- Marine Corps Air Station Beaufort, 2015. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report 477 Dogwood Drive, Laurel Bay Military Housing Area, July 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations*, March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, March 2018.

Table

Table 1

Laboratory Analytical Results - Soil 112 Dogwood Drive (Formerly 477 Dogwood Drive)

Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	SCDHEC RBSLs (1)	Results Samples Collected 10/13/14 and 02/03/15		
		477 Dogwood-1	477 Dogwood-2	
Volatile Organic Compounds Analyzo	ed by EPA Method 8260B (mg/kg)		1	
Benzene	0.003	ND	ND	
Ethylbenzene	1.15	ND	ND	
Naphthalene	0.036	0.00487	ND	
Toluene	0.627	ND	ND	
Xylenes, Total	13.01	ND	ND	
Semivolatile Organic Compounds An	alyzed by EPA Method 8270D (mg/kg)			
Benzo(a)anthracene	0.66	ND	ND	
Benzo(b)fluoranthene	0.66	ND	ND	
Benzo(k)fluoranthene	0.66	ND	ND	
Chrysene	0.66	ND	ND	
Dibenz(a,h)anthracene	0.66	ND	ND	

Notes:

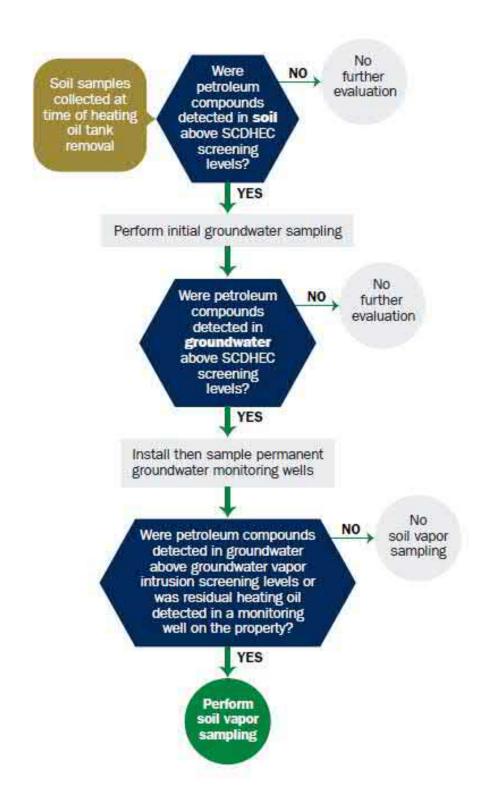
⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.0 and 3.1 (SCDHEC, May 2015 and SCDHEC, February 2016) and the Underground Storage Tank Assessment Guidelines (SCDHEC, February 2006).

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligram per kilogram


ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The laboratory report is provided in Appendix B.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Reports

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

SC DHEC - Bureau of Land & Waste Management Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

	mmanding Officer Attn: N. n, Individual, Public Agency, Other)	REAO (Craig Ehde)
P.O. Box 55001	,	
Mailing Address Beaufort,	South Carolina	29904-5001
City	State	Zip Code
843	228-7317	Craig Ehde
Area Code	Telephone Number	Contact Person

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. #	The state of the s			
Laurel Bay Militar		arine Corps A	ir Station,	Beaufort, SC
Facility Name or Company S	Site Identifier			
477 Dogwood Drive,		ary Housing A	Area	
Street Address or State Road	(as applicable)			
Beaufort,	Beaufort			
City	County			
Street Address or State Road	(as applicable) Beaufort			

Attachment 2

III. INSURANCE INFORMATION

Insurance Statement					
The petroleum release reported to DHEC on at Permit ID Number may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.					
Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES NO (check one)					
If you answered YES to the above question, please complete the following information:					
My policy provider is: The policy deductible is: The policy limit is:					
If you have this type of insurance, please include a copy of the policy with this report.					
I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)					
V. CERTIFICATION (To be signed by the UST owner)					
I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.					
Name (Type or print.)					
Signature					
To be completed by Notary Public:					
Sworn before me this day of, 20					
(Name)					
Notary Public for the state of Please affix State seal if you are commissioned outside South Carolina					

	VI. UST INFORMATION	
		477Dogwood-1
F	Product(ex. Gas, Kerosene)	Heating oil
	Capacity(ex. 1k, 2k)	280 gal
A	Age	Late 1950s
C	Construction Material(ex. Steel, FRP)	Steel
N	Month/Year of Last Use	Mid 1980s
Ι	Depth (ft.) To Base of Tank	4 ' 4 "
S	Spill Prevention Equipment Y/N	No
(Overfill Prevention Equipment Y/N	No
N	Method of Closure Removed/Filled	Removed
Γ	Date Tanks Removed/Filled	10/13/2014
7	Visible Corrosion or Pitting Y/N	Yes
1	Visible Holes Y/N	Yes
N	Method of disposal for any USTs removed from the UST 477Dogwood-1 was removed from	
	Subtitle "D" landfill. See Attachm	-

VII. PIPING INFORMATION

		477Dogwood-1
		Steel
(Construction Material(ex. Steel, FRP)	& Copper
]	Distance from UST to Dispenser	N/A
]	Number of Dispensers	N/A
,	Type of System Pressure or Suction	Suction
•	Was Piping Removed from the Ground? Y/N	No
	Visible Corrosion or Pitting Y/N	Yes
	Visible Holes Y/N	No
	Age	Late 1950s
]	It any corrosion, pitting, or holes were observed, de	scribe the location and extent for each piping r
]	Corrosion and pitting were found	
-		on the surface of the steel ven
-	Corrosion and pitting were found pipe. Copper supply and return li	on the surface of the steel ventes were sound. PTION AND HISTORY
	Corrosion and pitting were found pipe. Copper supply and return li VIII. BRIEF SITE DESCRIPTION The USTs at the residences are contact the contact to the contact	on the surface of the steel ventes were sound. PTION AND HISTORY astructed of single wall steel
	Corrosion and pitting were found pipe. Copper supply and return li	on the surface of the steel ventes were sound. PTION AND HISTORY astructed of single wall steel or heating. These USTs were
	Corrosion and pitting were found pipe. Copper supply and return li VIII. BRIEF SITE DESCRIPTION The USTs at the residences are contained fuel oil formerly contained fuel	on the surface of the steel ventes were sound. PTION AND HISTORY astructed of single wall steel or heating. These USTs were
	Corrosion and pitting were found pipe. Copper supply and return li VIII. BRIEF SITE DESCRIPTION The USTs at the residences are contained fuel oil formerly contained fuel	on the surface of the steel ventes were sound. PTION AND HISTORY astructed of single wall steel or heating. These USTs were
	Corrosion and pitting were found pipe. Copper supply and return li VIII. BRIEF SITE DESCRIPTION The USTs at the residences are contained fuel oil formerly contained fuel	on the surface of the steel ventes were sound. PTION AND HISTORY astructed of single wall steel or heating. These USTs were

IX. SITE CONDITIONS

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map.		Х	
B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells? If yes, indicate location on site map and describe the odor (strong,		Х	
mild, etc.) C. Was water present in the UST excavation, soil borings, or trenches? If yes, how far below land surface (indicate location and depth)?		Х	
D. Did contaminated soils remain stockpiled on site after closure? If yes, indicate the stockpile location on the site map.		Х	
Name of DHEC representative authorizing soil removal:			
E. Was a petroleum sheen or free product detected on any excavation or boring waters? If yes, indicate location and thickness.		х	

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

B.

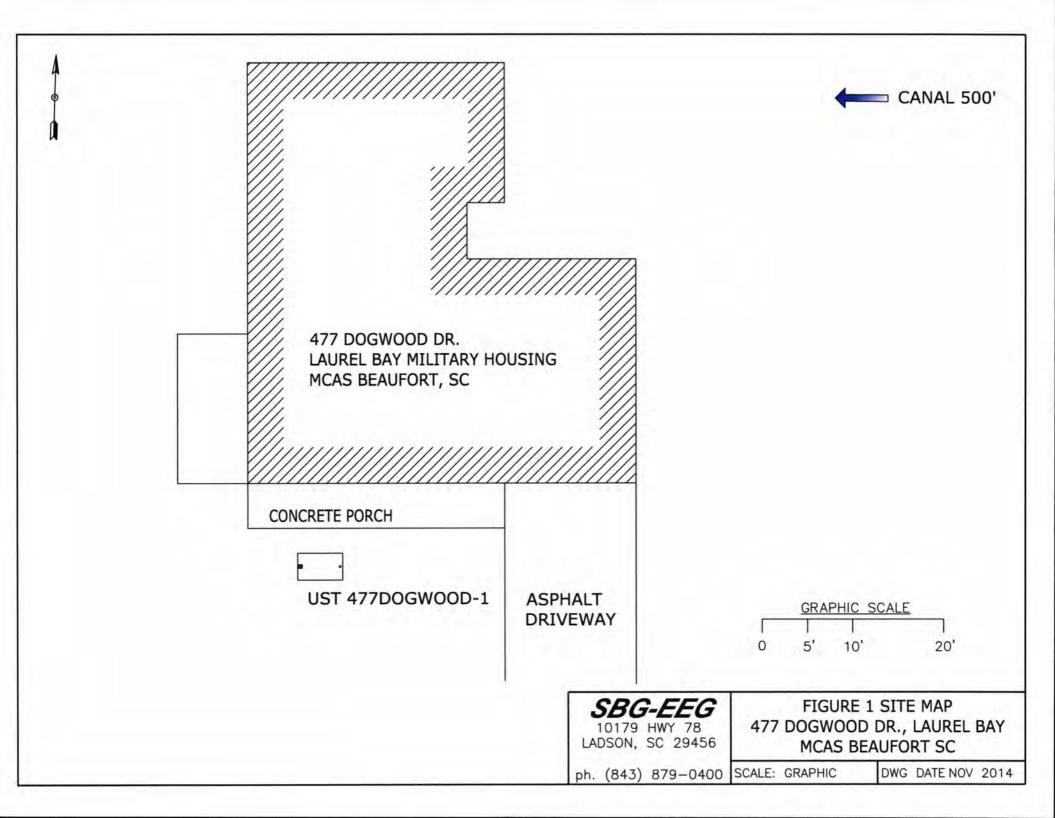
Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA#
477 Dogwood1	Excav at fill end	Soil	Sandy-clay	4'4"	10/13/14 1500 hrs	P. Shaw	
	_						
8							
9							
10							
11							- 18.2
12							
13							
14							
15							
16							
17							
18							
19							
20							

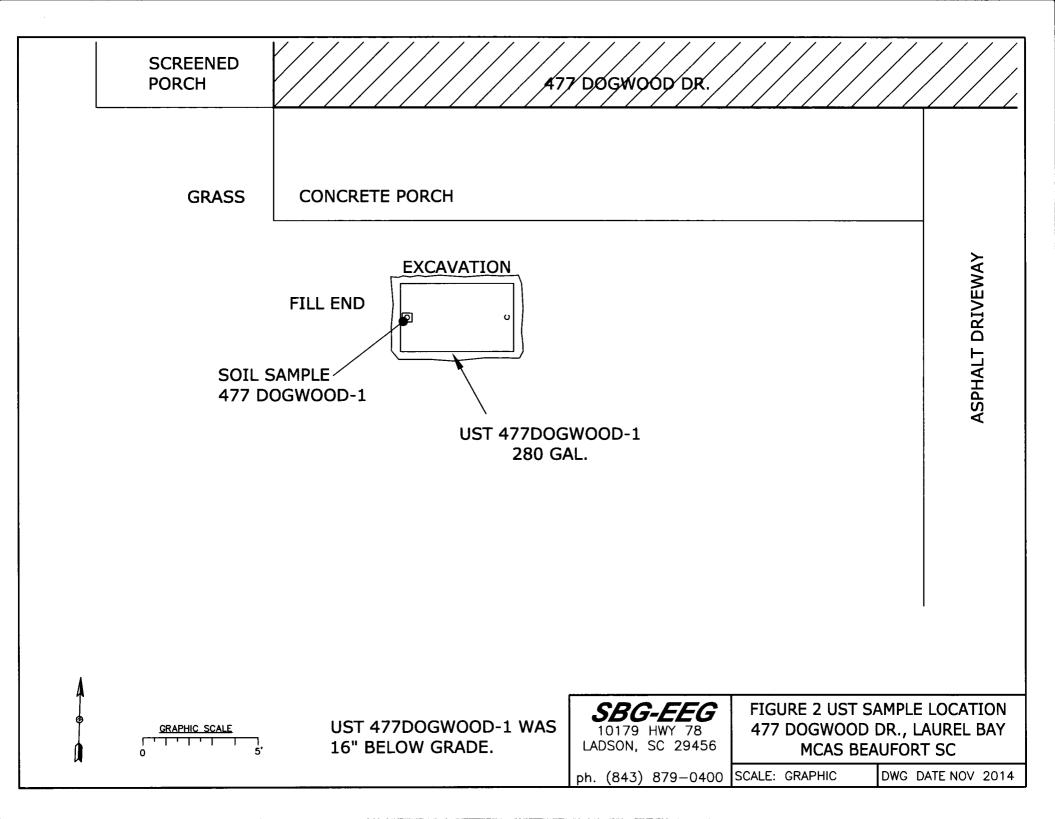
^{* =} Depth Below the Surrounding Land Surface

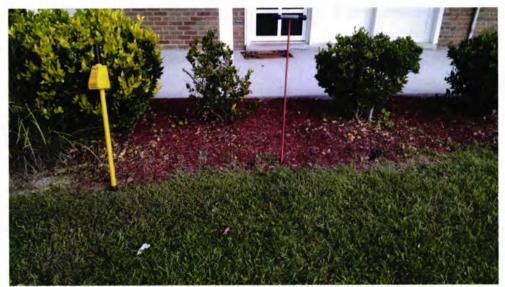
XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280
and SC DHEC Assessment Guidelines. Sample containers were prepared by the
testing laboratory. The grab method was utilized to fill the sample
containers leaving as little head space as possible and immediately
capped. Soil samples were extracted from area below tank. The
samples were marked, logged, and immediately placed in a sample cooler
packed with ice to maintain an approximate temperature of 4 degrees
Centigrade. Tools were thoroughly cleaned and decontaminated with
the seven step decon process after each use. The samples remained in
custody of SBG-EEG, Inc. until they were transferred to Test America
Incorporated for analysis as documented in the Chain of Custody Record.


XII. RECEPTORS


		Yes	No
A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?	*X	
	*Stormwater drainag	e can	al
	If yes, indicate type of receptor, distance, and direction on site map.		
В.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		Х
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		X
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination? *Sewer, water, electrical	*X	
ĺ		1 -	
	cable, fiber optic & If yes, indicate the type of utility, distance, and direction on the site map.	geotr	ermal
_			
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		X
	If yes, indicate the area of contaminated soil on the site map.		


XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 477Dogwood-1.

Picture 2: UST 477Dogwood-1 tank pit.

Picture 3: Site at completion of work.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

					<u> </u>	T
CoC UST	477Dogwood-1					
Benzene	ND					
Toluene	ND					
Ethylbenzene	ND					
Xylenes	ND					
Naphthalene	0.00487 mg/k	9				
Benzo (a) anthracene	ND					
Benzo (b) fluoranthene	ND					
Benzo (k) fluoranthene	ND					
Chrysene	ND					
Dibenz (a, h) anthracene	ND					
TPH (EPA 3550)						
СоС						
Benzene						
Toluene				ļ		
Ethylbenzene						
Xylenes						
Naphthalene						
Benzo (a) anthracene						
Benzo (b) fluoranthene						
Benzo (k) fluoranthene						
Chrysene						
Dibenz (a, h) anthracene						
TPH (EPA 3550)						

SUMMARY OF ANALYSIS RESULTS (cont'd)
Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	W-1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5				.=
Toluene	1,000	-			
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
MTBE	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-63822-1

Client Project/Site: Laurel Bay Site

For:

Small Business Group Inc. 10179 Highway 78 Ladson, South Carolina 29456

Attn: Tom McElwee

Authorized for release by: 10/30/2014 1:08:12 PM

Kuth Haye

Ken Hayes, Project Manager II (615)301-5035

ken.hayes@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

9

5

0

8

9

10

12

13

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	
QC Association	14
	16
Method Summary	17
	18
Chain of Custody	19
Receipt Checklists	21

Sample Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Site TestAmerica Job ID: 490-63822-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-63822-1	1462 Cardinal	Soil	10/09/14 12:15	10/15/14 08:20
490-63822-2	477 Dogwood-1	Soil	10/13/14 15:00	10/15/14 08:20

3

4

5

6

8

9

10

12

13

Case Narrative

Client: Small Business Group Inc.

TestAmerica Job ID: 490-63822-1

Project/Site: Laurel Bay Site

Job ID: 490-63822-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-63822-1

Comments

No additional comments.

Receipt

The samples were received on 10/15/2014 8:20 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.4° C.

GC/MS VOA

Method(s) 8260B: The method blank for batch 199730 contained naphthalene above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The surrogate recovery for the laboratory control sample (LCS) associated with batch 201160 was outside the upper control limits. All associated sample surrogates fell within acceptance criteria; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Definitions/Glossary

Client: Small Business Group Inc. Project/Site: Laurel Bay Site

TestAmerica Job ID: 490-63822-1

Qualifiers

GC/MS VOA

Qualifier В

Qualifier Description

Compound was found in the blank and sample. J

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier X

Qualifier Description

Surrogate is outside control limits

Glossary

Abbreviation

These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid

Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dilution Factor Dil Fac

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration MDA Minimum detectable activity EDL **Estimated Detection Limit**

MDC Minimum detectable concentration

Method Detection Limit MDL ML Minimum Level (Dioxin) NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

Practical Quantitation Limit PQL

QC Quality Control RER Relative error ratio

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TEQ

TestAmerica Nashville

Client Sample Results

Client: Small Business Group Inc.

TestAmerica Job ID: 490-63822-1

Lab Sample ID: 490-63822-1

Fac	5
1	
1	6
1	

Project/Site: Laurel Bay Site

Client Sample ID: 1462 Cardinal

Date Collected: 10/09/14 12:15 Date Received: 10/15/14 08:20

Date Received: 10/15/14 08:20								rercent 3011	us. 10.5
Method: 8260B - Volatile Orga	nic Compounds	(GC/MS)							200
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00265	0.000887	mg/Kg	Ħ	10/17/14 14:17	10/21/14 18:37	1
Ethylbenzene	ND		0.00265	0.000887	mg/Kg	b	10/17/14 14:17	10/21/14 18:37	1
Naphthalene	0.00337	JB	0.00662	0.00225	mg/Kg	a	10/17/14 14:17	10/21/14 18:37	1
Toluene	ND		0.00265	0.000979	mg/Kg	O	10/17/14 14:17	10/21/14 18:37	1
Xylenes, Total	ND		0.00397	0.000887	mg/Kg	п	10/17/14 14:17	10/21/14 18:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		70 - 130				10/17/14 14:17	10/21/14 18:37	1
4-Bromofluorobenzene (Surr)	110		70 - 130				10/17/14 14:17	10/21/14 18:37	1
Dibromofluoromethane (Surr)	111		70 - 130				10/17/14 14:17	10/21/14 18:37	1
Toluene-d8 (Surr)	101		70 - 130				10/17/14 14:17	10/21/14 18:37	1
Method: 8270D - Semivolatile	Organic Compou	inds (GC/MS	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0666	0.00994	mg/Kg	D	10/21/14 17:49	10/24/14 20:29	1
Acenaphthylene	ND		0.0666	0.00895	mg/Kg	10	10/21/14 17:49	10/24/14 20:29	1
Anthracene	ND		0.0666	0.00895	mg/Kg	122	10/21/14 17:49	10/24/14 20:29	1
Benzo[a]anthracene	ND		0.0666	0.0149	mg/Kg	53	10/21/14 17:49	10/24/14 20:29	1
Benzo[a]pyrene	ND		0.0666	0.0119	mg/Kg	372	10/21/14 17:49	10/24/14 20:29	1
Benzolhlfluoranthene	ND		0.0666	0.0119	ma/Ka	32	10/21/14 17:49	10/24/14 20:29	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND	0.0666	0.00994	mg/Kg	13	10/21/14 17:49	10/24/14 20:29	1
Acenaphthylene	ND	0.0666	0.00895	mg/Kg	12	10/21/14 17:49	10/24/14 20:29	1
Anthracene	ND	0.0666	0.00895	mg/Kg	12	10/21/14 17:49	10/24/14 20:29	1
Benzo[a]anthracene	ND	0.0666	0.0149	mg/Kg	53	10/21/14 17:49	10/24/14 20:29	1
Benzo[a]pyrene	ND	0.0666	0.0119	mg/Kg	372	10/21/14 17:49	10/24/14 20:29	1
Benzo[b]fluoranthene	ND	0.0666	0.0119	mg/Kg	12	10/21/14 17:49	10/24/14 20:29	1
Benzo[g,h,i]perylene	ND	0.0666	0.00895	mg/Kg	12	10/21/14 17:49	10/24/14 20:29	1
Benzo[k]fluoranthene	ND	0.0666	0.0139	mg/Kg	22	10/21/14 17:49	10/24/14 20:29	1
1-Methylnaphthalene	ND	0.0666	0.0139	mg/Kg	172	10/21/14 17:49	10/24/14 20:29	1
Pyrene	ND	0.0666	0.0119	mg/Kg	22+	10/21/14 17:49	10/24/14 20:29	1
Phenanthrene	ND	0.0666	0.00895	mg/Kg	13	10/21/14 17:49	10/24/14 20:29	1
Chrysene	ND	0.0666	0.00895	mg/Kg	Ø	10/21/14 17:49	10/24/14 20:29	1
Dibenz(a,h)anthracene	ND	0.0666	0.00696	mg/Kg	12	10/21/14 17:49	10/24/14 20:29	1
Fluoranthene	ND	0.0666	0.00895	mg/Kg	123	10/21/14 17:49	10/24/14 20:29	1
Fluorene	ND	0.0666	0.0119	mg/Kg	Ø	10/21/14 17:49	10/24/14 20:29	1
Indeno[1,2,3-cd]pyrene	ND	0.0666	0.00994	mg/Kg	33	10/21/14 17:49	10/24/14 20:29	1
Naphthalene	ND	0.0666	0.00895	mg/Kg	D	10/21/14 17:49	10/24/14 20:29	1
2-Methylnaphthalene	ND	0.0666	0.0159	mg/Kg	Д	10/21/14 17:49	10/24/14 20:29	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	49	29 - 120	10/21/14 17:49	10/24/14 20:29	1
Terphenyl-d14 (Surr)	58	13 - 120	10/21/14 17:49	10/24/14 20:29	1
Nitrobenzene-d5 (Surr)	48	27 - 120	10/21/14 17:49	10/24/14 20:29	1

General Chemistry Analyte	Result Qualifier	RL	PI	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	result Qualifer	7,12		0	-	· · · opuiou	rinaryaou	
Percent Solids	79	0.10	0.10	%			10/15/14 16:55	1

Client Sample Results

Client: Small Business Group Inc. Project/Site: Laurel Bay Site

Date Received: 10/15/14 08:20

Analyte

Percent Solids

TestAmerica Job ID: 490-63822-1

Client Sample ID: 477 Dogwood-1 Lab Sample ID: 490-63822-2 Date Collected: 10/13/14 15:00

Perce

Matrix: Soil	
ent Solids: 73.4	

ate Received: 10/15/14 08:20								Percent Soil	us: 13.4
Method: 8260B - Volatile Orga	nic Compounds	(GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00340	0.00114	mg/Kg	n	10/17/14 14:17	10/21/14 18:08	1
Ethylbenzene	ND		0.00340	0.00114	mg/Kg	n	10/17/14 14:17	10/21/14 18:08	1
Naphthalene	0.00487	JB	0.00850	0.00289	mg/Kg	33	10/17/14 14:17	10/21/14 18:08	1
Toluene	ND		0.00340	0.00126	mg/Kg	10	10/17/14 14:17	10/21/14 18:08	1
Kylenes, Total	ND		0.00510	0.00114	mg/Kg	a	10/17/14 14:17	10/21/14 18:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		70 - 130				10/17/14 14:17	10/21/14 18:08	1
4-Bromofluorobenzene (Surr)	108		70 - 130				10/17/14 14:17	10/21/14 18:08	1
Dibromofluoromethane (Surr)	112		70 - 130				10/17/14 14:17	10/21/14 18:08	1
Foluene-d8 (Surr)	100		70 - 130				10/17/14 14:17	10/21/14 18:08	1
Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS	3)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.134	0.0200	mg/Kg	D	10/27/14 09:14	10/29/14 16:47	2
cenaphthylene	ND		0.134	0.0180	mg/Kg	Ø	10/27/14 09:14	10/29/14 16:47	2
Anthracene	ND		0.134	0.0180	mg/Kg	n	10/27/14 09:14	10/29/14 16:47	2
Benzo[a]anthracene	ND		0.134	0.0300	mg/Kg	a	10/27/14 09:14	10/29/14 16:47	2
Benzo[a]pyrene	ND		0.134	0.0240	mg/Kg	п	10/27/14 09:14	10/29/14 16:47	2
Benzo[b]fluoranthene	ND		0.134	0.0240	mg/Kg	300	10/27/14 09:14	10/29/14 16:47	2
Benzo[g,h,i]perylene	ND		0.134	0.0180	mg/Kg	300	10/27/14 09:14	10/29/14 16:47	2
Benzo[k]fluoranthene	ND		0.134	0.0280	mg/Kg	п	10/27/14 09:14	10/29/14 16:47	2
-Methylnaphthalene	ND		0.134	0.0280	mg/Kg	D	10/27/14 09:14	10/29/14 16:47	2
Pyrene	ND		0.134	0.0240	mg/Kg	D	10/27/14 09:14	10/29/14 16:47	2
Phenanthrene	ND		0.134	0.0180	mg/Kg	D	10/27/14 09:14	10/29/14 16:47	2
Chrysene	ND		0.134	0.0180	mg/Kg	D	10/27/14 09:14	10/29/14 16:47	2
Dibenz(a,h)anthracene	ND		0.134	0.0140	mg/Kg	D	10/27/14 09:14	10/29/14 16:47	2
luoranthene	ND		0.134	0.0180	mg/Kg	ET.	10/27/14 09:14	10/29/14 16:47	2
Fluorene	• ND		0.134	0.0240	mg/Kg	E	10/27/14 09:14	10/29/14 16:47	2
ndeno[1,2,3-cd]pyrene	ND		0.134	0.0200	mg/Kg	D	10/27/14 09:14	10/29/14 16:47	2
Naphthalene	ND		0.134	0.0180	mg/Kg	(3)	10/27/14 09:14	10/29/14 16:47	2
2-Methylnaphthalene	ND		0.134	0.0320	mg/Kg	ii)	10/27/14 09:14	10/29/14 16:47	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	76		29 - 120				10/27/14 09:14	10/29/14 16:47	2
Terphenyl-d14 (Surr)	83		13 - 120				10/27/14 09:14	10/29/14 16:47	2
Nitrobenzene-d5 (Surr)	71		27 - 120				10/27/14 09:14	10/29/14 16:47	2
General Chemistry									
Ameluka	Pocult	Qualifier	DI.	DI	Unit	n	Prepared	Analyzed	Dil Fac

Analyzed

10/15/14 16:55

Dil Fac

RL

0.10

Result Qualifier

73

RL Unit

0.10 %

Prepared

Client: Small Business Group Inc. Project/Site: Laurel Bay Site

TestAmerica Job ID: 490-63822-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: 490-63897-A-13-D MS

Matrix: Solid

Surrogate

Analysis Batch: 199730

Client	Sample	ID:	Mat	rix	Spike	
	Pret	TV	pe:	To	tal/NA	

Prep Batch: 199131

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	ND		0.0500	0.03520		mg/Kg	D	70	31 - 143
Ethylbenzene	ND		0.0500	0.03606		mg/Kg	n	72	23 - 161
Naphthalene	0.00225	JB	0.0500	0.01753		mg/Kg	u	31	10 - 176
Toluene	ND		0.0500	0.03318		mg/Kg	11	66	30 - 155
Xylenes, Total	ND		0.150	0.09053		mg/Kg	p	60	25 - 162

Limits

70 - 130

70 - 130

70 - 130

70 - 130

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Prep Batch: 199131

Lab Sample ID: 490-63897-A-13-E MSD
Matrix: Solid

Analysis Batch: 199730

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Sample Spike	MSD	MSD				%Rec.		RPD	
Qualifier	Added			Unit	D	%Rec	Limits	RPD	Limit
	0.0526	0.03553		mg/Kg	n	67	31 - 143	1	50
	0.0526	0.03348		mg/Kg	n	64	23 - 161	7	50
JB	0.0526	0.01198		mg/Kg	n	18	10 - 176	38	50
	0.0526	0.03406		mg/Kg	故	65	30 - 155	3	50
	0.158	0.08487		mg/Kg	CI	54	25 - 162	6	50
		0.0526 0.0526 J B 0.0526 0.0526	0.0526 0.03553 0.0526 0.03348 J B 0.0526 0.01198 0.0526 0.03406	0.0526 0.03553 0.0526 0.03348 J B 0.0526 0.01198 0.0526 0.03406	0.0526 0.03553 mg/Kg 0.0526 0.03348 mg/Kg J B 0.0526 0.01198 mg/Kg 0.0526 0.03406 mg/Kg	0.0526 0.03553 mg/Kg 0.0526 0.03348 mg/Kg 0.0526 0.01198 mg/Kg 0.0526 0.0526 0.03406 mg/Kg 0.0526 0.03406 mg/Kg	0.0526 0.03553 mg/Kg 5 67 0.0526 0.03348 mg/Kg 5 64 UB 0.0526 0.01198 mg/Kg 5 18 0.0526 0.03406 mg/Kg 5 65	0.0526 0.03553 mg/Kg 5 67 31 - 143 0.0526 0.03348 mg/Kg 5 64 23 - 161 UB 0.0526 0.01198 mg/Kg 5 18 10 - 176 0.0526 0.03406 mg/Kg 5 65 30 - 155	0.0526 0.03553 mg/Kg 2 67 31 - 143 1 0.0526 0.03348 mg/Kg 2 64 23 - 161 7 UB 0.0526 0.01198 mg/Kg 2 18 10 - 176 38 0.0526 0.03406 mg/Kg 2 65 30 - 155 3

MSD MSD

MS MS %Recovery Qualifier

90

111

91

102

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		70 - 130
4-Bromofluorobenzene (Surr)	115		70 - 130
Dibromofluoromethane (Surr)	91		70 - 130
Toluene-d8 (Surr)	105		70 - 130

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 199730

Lab Sample ID: MB 490-199730/7

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.000670	mg/Kg			10/21/14 17:39	1
Ethylbenzene	ND		0.00200	0.000670	mg/Kg			10/21/14 17:39	1
Naphthalene	0.003141	J	0.00500	0.00170	mg/Kg			10/21/14 17:39	1
Toluene	ND		0.00200	0.000740	mg/Kg			10/21/14 17:39	1
Xylenes, Total	ND		0.00300	0.000670	mg/Kg			10/21/14 17:39	1

	MD .	MID				
Surrogate	%Recovery	Qualifier	Limits	 Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		70 - 130		10/21/14 17:39	1
4-Bromofluorobenzene (Surr)	109		70 - 130		10/21/14 17:39	1
Dibromofluoromethane (Surr)	110		70 - 130		10/21/14 17:39	1
Toluene-d8 (Surr)	102		70 - 130		10/21/14 17:39	1

TestAmerica Nashville

Client: Small Business Group Inc. Project/Site: Laurel Bay Site

TestAmerica Job ID: 490-63822-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

100

102

103

Lab Sample ID: LCS 490-199730/3

Matrix: Solid

Analysis Batch: 199730

Client	Sample	ID:	Lab	Contro	Sample
			Pren	Type:	Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.0500	0.04973		mg/Kg		99	75 - 127
Ethylbenzene	0.0500	0.05567		mg/Kg		111	80 - 134
Naphthalene	0.0500	0.05030		mg/Kg		101	69 - 150
Toluene	0.0500	0.05079		mg/Kg		102	80 - 132
Xylenes, Total	0.150	0.1553		mg/Kg		104	80 - 137

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 107 70 - 130

70 - 130

70 - 130

70 - 130

Lab Sample ID: LCSD 490-199730/4

Matrix: Solid

Toluene-d8 (Surr)

Analysis Batch: 199730

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	RPD
RPD	Limit
0	50
3	50
5	50
1	50
2	50
	3

LCSD LCSD Surrogate Limits %Recovery Qualifier 1,2-Dichloroethane-d4 (Surr) 70 - 130 104 70 - 130 4-Bromofluorobenzene (Surr) 96 Dibromofluoromethane (Surr) 104 70 - 130 Toluene-d8 (Surr) 104 70 - 130

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-199849/1-A

Matrix: Solid

Analysis Batch: 200687

Client Sam	ple ID: Method Blank
	Prep Type: Total/NA

Prep Batch: 199849

	MB I	MB						449	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0670	0.0100	mg/Kg		10/21/14 17:49	10/24/14 19:43	1
Acenaphthylene	ND		0.0670	0.00900	mg/Kg		10/21/14 17:49	10/24/14 19:43	1
Anthracene	ND		0.0670	0.00900	mg/Kg		10/21/14 17:49	10/24/14 19:43	1
Benzo[a]anthracene	ND		0.0670	0.0150	mg/Kg		10/21/14 17:49	10/24/14 19:43	1
Benzo[a]pyrene	ND		0.0670	0.0120	mg/Kg		10/21/14 17:49	10/24/14 19:43	1
Benzo[b]fluoranthene	ND		0.0670	0.0120	mg/Kg		10/21/14 17:49	10/24/14 19:43	1
Benzo[g,h,i]perylene	ND		0.0670	0.00900	mg/Kg		10/21/14 17:49	10/24/14 19:43	1
Benzo[k]fluoranthene	ND		0.0670	0.0140	mg/Kg		10/21/14 17:49	10/24/14 19:43	1
1-Methylnaphthalene	ND		0.0670	0.0140	mg/Kg		10/21/14 17:49	10/24/14 19:43	1
Pyrene	ND		0.0670	0.0120	mg/Kg		10/21/14 17:49	10/24/14 19:43	1
Phenanthrene	ND		0.0670	0.00900	mg/Kg		10/21/14 17:49	10/24/14 19:43	1

TestAmerica Nashville

Page 9 of 21

10/30/2014

Client: Small Business Group Inc. Project/Site: Laurel Bay Site

TestAmerica Job ID: 490-63822-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 490-199849/1-A Matrix: Solid

Analysis Batch: 200687

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 199849

	MB	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chrysene	ND		0.0670	0.00900	mg/Kg		10/21/14 17:49	10/24/14 19:43	1
Dibenz(a,h)anthracene	ND		0.0670	0.00700	mg/Kg		10/21/14 17:49	10/24/14 19:43	1
Fluoranthene	ND		0.0670	0.00900	mg/Kg		10/21/14 17:49	10/24/14 19:43	1
Fluorene	ND		0.0670	0.0120	mg/Kg		10/21/14 17:49	10/24/14 19:43	1
Indeno[1,2,3-cd]pyrene	ND		0.0670	0.0100	mg/Kg		10/21/14 17:49	10/24/14 19:43	1
Naphthalene	ND		0.0670	0.00900	mg/Kg		10/21/14 17:49	10/24/14 19:43	1
2-Methylnaphthalene	ND		0.0670	0.0160	mg/Kg		10/21/14 17:49	10/24/14 19:43	1

MB MB Limits Dil Fac Surrogate %Recovery Qualifier Prepared Analyzed 2-Fluorobiphenyl (Surr) 57 29 - 120 10/21/14 17:49 10/24/14 19:43 Terphenyl-d14 (Surr) 13 - 120 10/21/14 17:49 10/24/14 19:43 63 27 - 120 10/24/14 19:43 10/21/14 17:49 Nitrobenzene-d5 (Surr) 55

Lab Sample ID: LCS 490-199849/2-A

Matrix: Solid

Analysis Batch: 200687

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 199849

Allalysis Datcii. 200007	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthylene	1.67	0.9230		mg/Kg		55	38 - 120
Anthracene	1.67	0.8838		mg/Kg		53	46 - 124
Benzo[a]anthracene	1.67	0.9195		mg/Kg		55	45 - 120
Benzo[a]pyrene	1.67	0.8865		mg/Kg		53	45 - 120
Benzo[b]fluoranthene	1.67	0.9114		mg/Kg		55	42 - 120
Benzo[g,h,i]perylene	1.67	0.8795		mg/Kg		53	38 - 120
Benzo[k]fluoranthene	1.67	0.8869		mg/Kg		53	42 - 120
1-Methylnaphthalene	1.67	0.9199		mg/Kg		55	32 - 120
Pyrene	1.67	0.8305		mg/Kg		50	43 - 120
Phenanthrene	1.67	0.8760		mg/Kg		53	45 - 120
Chrysene	1.67	0.8596		mg/Kg		52	43 - 120
Dibenz(a,h)anthracene	1.67	0.9353		mg/Kg		56	32 - 128
Fluoranthene	1.67	0.9194		mg/Kg		55	46 - 120
Fluorene	1.67	0.9483		mg/Kg		57	42 - 120
Indeno[1,2,3-cd]pyrene	1.67	0.8989		mg/Kg		54	41 - 121
Naphthalene	1.67	0.9058		mg/Kg		54	32 - 120
2-Methylnaphthalene	1.67	0.9091		mg/Kg		55	28 - 120

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	48		29 - 120
Terphenyl-d14 (Surr)	51		13 - 120
Nitrobenzene-d5 (Surr)	46		27 - 120

Lab Sample ID: 490-63822-1 MS

Matrix: Soil

Analysis Batch: 200687

Client Sample ID: 1462 Cardinal Prep Type: Total/NA

Prep Batch: 199849

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthylene	ND		2.10	1.399		mg/Kg	0	67	25 - 120
Anthracene	ND		2.10	1.400		mg/Kg	0.	67	28 - 125

TestAmerica Nashville

Page 10 of 21

10/30/2014

Client: Small Business Group Inc. Project/Site: Laurel Bay Site TestAmerica Job ID: 490-63822-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 490-63822-1 MS

Matrix: Soil

Analysis Batch: 200687

Client Sample ID: 1462 Cardinal Prep Type: Total/NA

Prep Batch: 199849

Contract of the Contract of th	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzo[a]anthracene	ND		2.10	1.456		mg/Kg	0	69	23 - 120
Benzo[a]pyrene	ND		2.10	1.376		mg/Kg	n	66	15 - 128
Benzo[b]fluoranthene	ND		2.10	1.433		mg/Kg	13	68	12 - 133
Benzo[g,h,i]perylene	ND		2.10	1.306		mg/Kg	.0	62	22 - 120
Benzo[k]fluoranthene	ND		2.10	1.451		mg/Kg	n	69	28 - 120
1-Methylnaphthalene	ND		2.10	1.371		mg/Kg	10	65	10 - 120
Pyrene	ND		2.10	1.347		mg/Kg	O	64	20 - 123
Phenanthrene	ND		2.10	1.368		mg/Kg	30	65	21 - 122
Chrysene	ND		2.10	1.397		mg/Kg	10	67	20 - 120
Dibenz(a,h)anthracene	ND		2.10	1.387		mg/Kg	U	66	12 - 128
Fluoranthene	ND		2.10	1.476		mg/Kg	0	70	10 - 143
Fluorene	ND		2.10	1.472		mg/Kg	0	70	20 - 120
Indeno[1,2,3-cd]pyrene	ND		2.10	1.338		mg/Kg	0	64	22 - 121
Naphthalene	ND		2.10	1.327		mg/Kg	0	63	10 - 120
2-Methylnaphthalene	ND		2.10	1.366		mg/Kg	0	65	13 - 120
	100	1.2							

MS MS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	55		29 - 120
Terphenyl-d14 (Surr)	64		13 - 120
Nitrobenzene-d5 (Surr)	51		27 - 120

Lab Sample ID: 490-63822-1 MSD

Matrix: Soil

Analysis Batch: 200687

Client Sample ID: 1462 Cardinal

Prep Type: Total/NA

Prep Batch: 199849

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit 2.10 1.220 58 25 - 120 50 ND 14 Acenaphthylene mg/Kg 2.10 28 - 125 Anthracene ND 1.229 mg/Kg 59 13 49 Benzo[a]anthracene ND 2.10 1.289 mg/Kg 61 23 - 120 12 50 ND 2.10 1.204 57 15 - 128 13 50 Benzo[a]pyrene mg/Kg ND 2.10 1.285 61 12 - 133 50 Benzo[b]fluoranthene mg/Kg 11 Benzo[g,h,i]perylene ND 2.10 1.159 mg/Kg 55 22 - 120 12 50 28 - 120 17 Benzo[k]fluoranthene ND 2.10 1.229 mg/Kg 58 45 10 - 120 ND 2.10 1.235 59 10 50 1-Methylnaphthalene mg/Kg 20 - 123 Pyrene ND 2.10 1.201 mg/Kg 57 11 50 21 - 122 12 50 ND 2.10 1.211 mg/Kg Phenanthrene ND 2.10 1.182 56 20 - 120 17 49 mg/Kg Chrysene ND 12 - 128 2.10 58 13 50 Dibenz(a,h)anthracene 1.215 mg/Kg Fluoranthene ND 2.10 1.325 mg/Kg 63 10 - 143 11 50 2.10 0 20 - 120 12 Fluorene ND 1.306 mg/Kg 62 50 2.10 22 - 121 12 50 ND 1.190 57 Indeno[1,2,3-cd]pyrene mg/Kg Naphthalene ND 2.10 1.177 mg/Kg 56 10 - 120 12 50 2-Methylnaphthalene ND 2.10 1.223 mg/Kg 13 - 120 11 50 MSD MSD

 Surrogate
 %Recovery
 Qualifier
 Limits

 2-Fluorobiphenyl (Surr)
 50
 29 - 120

 Terphenyl-d14 (Surr)
 56
 13 - 120

TestAmerica Nashville

Client: Small Business Group Inc. Project/Site: Laurel Bay Site

TestAmerica Job ID: 490-63822-1

Client Sample ID: 1462 Cardinal

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 490-63822-1 MSD

Lab Sample ID: MB 490-201160/1-A

Matrix: Soil

Matrix: Solid

Analysis Batch: 200687

Analysis Batch: 201496

MSD MSD

Surrogate %Recovery Qualifier Limits 27 - 120 Nitrobenzene-d5 (Surr)

Client Sample ID: Method Blank

Prep Batch: 201160

Prep Type: Total/NA

Prep Batch: 199849

Prep Type: Total/NA

	MB MB							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND	0.0670	0.0100	mg/Kg		10/27/14 09:14	10/28/14 23:34	1
Acenaphthylene	ND	0.0670	0.00900	mg/Kg		10/27/14 09:14	10/28/14 23:34	1
Anthracene	ND	0.0670	0.00900	mg/Kg		10/27/14 09:14	10/28/14 23:34	1
Benzo[a]anthracene	ND	0.0670	0.0150	mg/Kg		10/27/14 09:14	10/28/14 23:34	1
Benzo[a]pyrene	ND	0.0670	0.0120	mg/Kg		10/27/14 09:14	10/28/14 23:34	1
Benzo[b]fluoranthene	ND	0.0670	0.0120	mg/Kg		10/27/14 09:14	10/28/14 23:34	1
Benzo[g,h,i]perylene	ND	0.0670	0.00900	mg/Kg		10/27/14 09:14	10/28/14 23:34	1
Benzo[k]fluoranthene	ND	0.0670	0.0140	mg/Kg		10/27/14 09:14	10/28/14 23:34	1
1-Methylnaphthalene	ND	0.0670	0.0140	mg/Kg		10/27/14 09:14	10/28/14 23:34	1
Pyrene	ND	0.0670	0.0120	mg/Kg		10/27/14 09:14	10/28/14 23:34	1
Phenanthrene	ND	0.0670	0.00900	mg/Kg		10/27/14 09:14	10/28/14 23:34	1
Chrysene	ND	0.0670	0.00900	mg/Kg		10/27/14 09:14	10/28/14 23:34	1
Dibenz(a,h)anthracene	ND	0.0670	0.00700	mg/Kg		10/27/14 09:14	10/28/14 23:34	1
Fluoranthene	ND	0.0670	0.00900	mg/Kg		10/27/14 09:14	10/28/14 23:34	1
Fluorene	ND	0.0670	0.0120	mg/Kg		10/27/14 09:14	10/28/14 23:34	1
Indeno[1,2,3-cd]pyrene	ND	0.0670	0.0100	mg/Kg		10/27/14 09:14	10/28/14 23:34	1
Naphthalene	ND	0.0670	0.00900	mg/Kg		10/27/14 09:14	10/28/14 23:34	1
2-Methylnaphthalene	ND	0.0670	0.0160	mg/Kg		10/27/14 09:14	10/28/14 23:34	1

MB	MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	DII Fac
2-Fluorobiphenyl (Surr)	74	29 - 120	10/27/14 09:14	10/28/14 23:34	1
Terphenyl-d14 (Surr)	95	13 - 120	10/27/14 09:14	10/28/14 23:34	1
Nitrobenzene-d5 (Surr)	65	27 - 120	10/27/14 09:14	10/28/14 23:34	1

Lab Sample ID: LCS 490-201160/2-A

Matrix: Solid

Analysis Batch: 201496

Client	Sample	ID:	Lab	Control	Sample
			_	-	

Prep Type: Total/NA Prep Batch: 201160

Tillary Dio Battern Edition							
Control of the Contro	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthylene	1.67	1.621		mg/Kg		97	38 - 120
Anthracene	1.67	1.646		mg/Kg		99	46 - 124
Benzo[a]anthracene	1.67	1.687		mg/Kg		101	45 - 120
Benzo[a]pyrene	1.67	1.684		mg/Kg		101	45 - 120
Benzo[b]fluoranthene	1.67	1.811		mg/Kg		109	42 - 120
Benzo[g,h,i]perylene	1.67	1.564		mg/Kg		94	38 - 120
Benzo[k]fluoranthene	1.67	1.667		mg/Kg		100	42 - 120
1-Methylnaphthalene	1.67	1.601		mg/Kg		96	32 - 120
Pyrene	1.67	1.671		mg/Kg		100	43 - 120
Phenanthrene	1.67	1.602		mg/Kg		96	45 - 120
Chrysene	1.67	1.611		mg/Kg		97	43 - 120
Dibenz(a,h)anthracene	1.67	1.688		mg/Kg		101	32 - 128

TestAmerica Nashville

Client: Small Business Group Inc. Project/Site: Laurel Bay Site

TestAmerica Job ID: 490-63822-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 490-201160/2-A

Matrix: Solid

Analysis Batch: 201496

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 201160

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoranthene	1.67	1.718		mg/Kg		103	46 - 120	
Fluorene	1.67	1.745		mg/Kg		105	42 - 120	
Indeno[1,2,3-cd]pyrene	1.67	1.451		mg/Kg		87	41 - 121	
Naphthalene	1.67	1.591		mg/Kg		95	32 - 120	
2-Methylnaphthalene	1.67	1.638		mg/Kg		98	28 - 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	100		29 - 120
Terphenyl-d14 (Surr)	122	X	13 - 120
Nitrobenzene-d5 (Surr)	94		27 - 120

Client Sample ID: Duplicate Prep Type: Total/NA

Lab Sample ID: 490-63804-A-16 DU

Method: Moisture - Percent Moisture

Matrix: Solid

Analysis Batch: 198272

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Solids	86		87		%		0.3	20

QC Association Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Site TestAmerica Job ID: 490-63822-1

ш

GC/MS VOA

Pre	p Bat	tch: 1	1989	04
-----	-------	--------	------	----

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-63822-1	1462 Cardinal	Total/NA	Soil	5035	
490-63822-2	477 Dogwood-1	Total/NA	Soil	5035	

Prep Batch: 199131

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-63897-A-13-D MS	Matrix Spike	Total/NA	Solid	5030B	
490-63897-A-13-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5030B	

Analysis Batch: 199730

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-63822-1	1462 Cardinal	Total/NA	Soil	8260B	198904
490-63822-2	477 Dogwood-1	Total/NA	Soil	8260B	198904
490-63897-A-13-D MS	Matrix Spike	Total/NA	Solid	8260B	199131
490-63897-A-13-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B	199131
LCS 490-199730/3	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 490-199730/4	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 490-199730/7	Method Blank	Total/NA	Solid	8260B	

GC/MS Semi VOA

Prep Batch: 199849

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-63822-1	1462 Cardinal	Total/NA	Soil	3550C	
490-63822-1 MS	1462 Cardinal	Total/NA	Soil	3550C	
490-63822-1 MSD	1462 Cardinal	Total/NA	Soil	3550C	
LCS 490-199849/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 490-199849/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 200687

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-63822-1	1462 Cardinal	Total/NA	Soil	8270D	199849
490-63822-1 MS	1462 Cardinal	Total/NA	Soil	8270D	199849
490-63822-1 MSD	1462 Cardinal	Total/NA	Soil	8270D	199849
LCS 490-199849/2-A	Lab Control Sample	Total/NA	Solid	8270D	199849
MB 490-199849/1-A	Method Blank	Total/NA	Solid	8270D	199849

Prep Batch: 201160

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-63822-2	477 Dogwood-1	Total/NA	Soil	3550C	
LCS 490-201160/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 490-201160/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 201496

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 490-201160/2-A	Lab Control Sample	Total/NA	Solid	8270D	201160
MB 490-201160/1-A	Method Blank	Total/NA	Solid	8270D	201160

Analysis Batch: 201771

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-63822-2	477 Dogwood-1	Total/NA	Soil	8270D	201160

TestAmerica Nashville

QC Association Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Site TestAmerica Job ID: 490-63822-1

4

General Chemistry

Analysis Batch: 198272

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
490-63804-A-16 DU	Duplicate	Total/NA	Solid	Moisture
490-63822-1	1462 Cardinal	Total/NA	Soil	Moisture
490-63822-2	477 Dogwood-1	Total/NA	Soil	Moisture

5

Prep Batch

Lab Chronicle

Client: Small Business Group Inc. Project/Site: Laurel Bay Site

TestAmerica Job ID: 490-63822-1

Client Sample ID: 1462 Cardinal

Client Sample ID: 477 Dogwood-1

Date Collected: 10/13/14 15:00

Date Received: 10/15/14 08:20

Date Collected: 10/09/14 12:15 Date Received: 10/15/14 08:20

Lab Sample ID: 490-63822-1

Matrix: Soil

Percent Solids: 78.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.788 g	5.0 mL	198904	10/17/14 14:17	JLP	TAL NSH
Total/NA	Analysis	8260B		1	4.788 g	5.0 mL	199730	10/21/14 18:37	KKK	TAL NSH
Total/NA	Prep	3550C			38.24 g	1.00 mL	199849	10/21/14 17:49	RMS	TAL NSH
Total/NA	Analysis	8270D		1	38.24 g	1.00 mL	200687	10/24/14 20:29	KKH	TAL NSH
Total/NA	Analysis	Moisture		1			198272	10/15/14 16:55	RRS	TAL NSH

Lab Sample ID: 490-63822-2

Matrix: Soil

Percent Solids: 73.4

Prep Type	Batch Type	Batch Method	Run	Dil	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.007 g	5.0 mL	198904	10/17/14 14:17	JLP	TAL NSH
Total/NA	Analysis	8260B		1	4.007 g	5.0 mL	199730	10/21/14 18:08	KKK	TAL NSH
Total/NA	Prep	3550C			40.93 g	1.00 mL	201160	10/27/14 09:14	LDC	TAL NSH
Total/NA	Analysis	8270D		2	40.93 g	1.00 mL	201771	10/29/14 16:47	SNR	TAL NSH
Total/NA	Analysis	Moisture		1			198272	10/15/14 16:55	RRS	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Method Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Site TestAmerica Job ID: 490-63822-1

ř

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL NSH
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL NSH
Moisture	Percent Moisture	EPA	TAL NSH

4

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

8

7

ŭ.

4

10

12

13

Certification Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Site

TestAmerica Job ID: 490-63822-1

Laboratory: TestAmerica Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
North Carolina (WW/SW)	State Prog	ram	4	387	12-31-14
The following analytes are	e included in this report, bu	t certification is not off	ered by the governing	authority:	
Analysis Method	Prep Method	Matrix	Anal	yte	
Moisture		Soil	Pero	ent Solids	
South Carolina	State Prog	ram	4	84009 (001)	02-28-15
The following analytes are	e included in this report, bu	t certification is not off	ered by the governing	authority:	
Analysis Method	Prep Method	Matrix	Anal	lyte	
8270D	3550C	Soil	1-Me	ethylnaphthalene	
Moisture		Soil	Perc	cent Solids	

COOLER RECEIPT FORM

190-63822 Chain of Custody

1. Tracking # 3957 (last 4 digits, FedEx)	
Courier: FedEx IR Gun ID 17610176	
2. Temperature of rep. sample or temp blank when opened: D, 4 Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen	? YES NO. NA
4. Were custody seals on outside of cooler?	EDNONA
If yes, how many and where: I Front I Back	Constitution
5. Were the seals intact, signed, and dated correctly?	(YESNONA
6. Were custody papers inside cooler?	YES NO NA
I certify that I opened the cooler and answered questions 1-6 (Intial)	0
7. Were custody seals on containers: YES AND and Intact	YESNONA
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Rubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pap	
9. Cooling process: (Ce) Ice-pack Ice (direct contact) Dry ic	
10. Did all containers arrive in good condition (unbroken)?	VESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	ES NONA
12. Did all container labels and tags agree with custody papers?	FESNONA
13a. Were VOA vials received?	OF NONA
b. Was there any observable headspace present in any VOA vial?	YESNO
14. Was there a Trip Blank in this cooler? YESNA If multiple coolers, seque	_
I certify that I unloaded the cooler and answered questions 7-14 (Intial)	7
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level	2 YESNO.NA
b. Did the bottle labels indicate that the correct preservatives were used	YESNO(NA
16. Was residual chlorine present?	YES, NO. NA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial	ATH
17. Were custody papers properly filled out (ink, signed, etc)?	€58NONA
18. Did you sign the custody papers in the appropriate place?	MESP.NONA
19. Were correct containers used for the analysis requested?	YES NO NA
20. Was sufficient amount of sample sent in each container?	YES NO NA
I certify that I entered this project into LIMS and answered questions 17-20 (intial)	ADH.
I certify that I attached a label with the unique LIMS number to each container (intial)	ATH
21. Were there Non-Conformance issues at login? YES.(NO) Was a NCM generated? YES.	60

3

6

7

9

10

12

13

To assist us in using the proper analytical methods, is this work being conducted for regulatory purposes? Compliance Monitoring? Enforcement Action? Yes No	Project	Analyze For. Standard TAT (Pre-Schedule Standard TAT TAT (Fre-Schedule		atory Comments: Temperature Upon Receipt VOCs Free of Headspace? Y N	
To assist us in using t methods, is this work regulatory purposes? Col	140		××	Time (%)	
Phone: 615-726-0177 Toll Free: 800-765-0980 Fax: 615-726-3404	(843)- 879-0401	MC (Glue Ledes) - Cares (March Global) - Care	7 X X X X X X X X X X X X X X X X X X X	Shipment: Date FEDEX Control of Shipment: Date FEDEX FEDX FED	
ishville Division 60 Foster Creighton ishville, TN 37204	ilt mcelwee@eeginc.net Fax No.:	Time Sampled No. of Containers Shipped Grab Composite Fleid Filtered ice ice	128 5 X 1500 5 X	Method Time Received by: Time Received by Test/un	
THE LEADER IN ENVIRONMENTAL TESTING Nat Client Name/Account #: EEG - SBG # 2449 Address: 10179 Highway 78 City/State/7in: 1 accor SC 29456	Project Manager: Tom McElwee email: moetwee@eeginc.net Telephone Number: 843.412.2897 Sampler Name: (Print)	Babe Sampled D / Description	109/14 200 - 10/19/14	Special Instructions: Relinquished W. P. Cate Relinquished by: Date	

Login Sample Receipt Checklist

Job Number: 490-63822-1 Client: Small Business Group Inc.

Login Number: 63822 List Number: 1

Creator: Huskey, Adam

Question	Answer	Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> <td></td>	True		
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	N/A		
The cooler or samples do not appear to have been compromised or ampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
s the Field Sampler's name present on COC?	True		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	N/A		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is c6mm (1/4").	True		
A Makanta samulas and makantana	Tava		

True

True

N/A

List Source: TestAmerica Nashville

Multiphasic samples are not present.

Residual Chlorine Checked.

Samples do not require splitting or compositing.

ATTACHMENT A

NON-HAZARDOUS MANIFEST

	NON HAZADDOUS BAANIESST	1. Generator's US EPA	A ID No.	Ma	nifest Doc N	No.	2. Page 1	of			
	NON-HAZARDOUS MANIFEST	N. 1 - 75 3 -					1				
13	B. Generator's Mailing Address:	Gen	erator's Sit	e Address (If di	ifferent than ma	ailing):	A. Manife	st Number		- · · · · · · · · · · · · · · · · · · ·	
	MCAS BEAUFORT						w	MNA	01519	117	
l	AUREL BAY HOUSING								Generator's l		
1	BEAUFORT, SC 29904							D. State v			
		79-0411									
5	5. Transporter 1 Company Name	843-530-1500	6.	US EPA IC	Number						
\subseteq	aroline Containors 0.80x 1935 Been for 4 50 39901	G t-						ansporter's l	D ·		
1	10.60x 1432 96601						D. Transp	orter's Phone	:		
7	7. Transporter 2 Company Name		8.	US EPA IE	Number						
							E. State T	ansporter's II	D laters		
_	· · · · · · · · · · · · · · · · · · ·			 = 			30.00	orter's Phone			<u> </u>
	Designated Facility Name and Site	Address	10.	US EPA	ID Number						
	HICKORY HILL LANDFILL						G. State F				
	2621 LOW COUNTRY DRIVE						H. State F	acility Phone	843-9	87-464	3
	RIDGELAND, SC 29936										
<u> </u>					T 12 Co.	ntainers	13. Total	14. Unit	T		
G 1	11. Description of Waste Materials				No.	Type	Quantity	Wt./Vol.	I. Mi	sc. Commen	nts
E	. HEATING OIL TANK FILLED \	NITH SAND					1.			O	
N						20	6.58	700		714	7
E R	WM Prof	île# 102655SC			*	J					
).										
т					1			V C			
이	WM Profile #										
R		<u> </u>								<u> </u>	
`	••							*.			
	WM Profile #										
 	1.										
`	•							4.5			
-	WM Profile #		7			allession					
'	. Additional Descriptions for Mater	nais Listeu Above			k. Dispos	al Location	,				
					Cell				Level		
					Grid						
	15. Special Handling Instructions and	Additional Information	١ , ,,,,,		1	(1)	1479	CAR	J	1	<u> </u>
	UST'S FROM	: 2)4	73 D.	ogwood	11	4)	17/	CAR	-ains	+	~_
	1)477 Daywoo	d 3) 14	159 (PARCI	NALL						
	Purchase Order #	12 mm (a)	EN	AERGENCY CO							
\vdash	16. GENERATOR'S CERTIFICATE:			* .	-						
	hereby certify that the above-descri	bed materials are not h	azardous w	vastes as defin	ed by 40 CF	R Part 261	or any applic	able state lav	v, have been	fully and	j
	accurately described, classified and p										
-	Printed Name	\ ~		ture "On beha					Month	Day	Year
	1.001	ing to the			15				17	C/	114
R	17. Transporter 1 Acknowledgement	of Receipt of Materials			411				T		r
A N S	Printed Name)	Signat	ture	11/1/				Month	Day	Year / /
	PRAH SHALL	<u> </u>		110	1				1/21	J	1/7
O R	18. Transporter 2 Acknowledgement	of Receipt of Materials	·····	A V	$\leq f + f$				 		T
T E	Printed Name	11	Signa	tyrie	A	ZA			Month	Day	Year
R	Mic HAEL BROTH	CN		MUM	· VV J				<u> </u>	$\underline{\mathcal{O}}$	17
١ :	19. Certificate of Final Treatment/Dis				* 🗸						
F I	certify, on behalf of the above listed		to the bes	t of my knowle	edge, the ab	ove-describ	ed waste w	as managed i	n compliance	e with all	
	applicable laws, regulations, permits										
<u> </u>	20. Facility Owner or Operator: Cert	ification of receipt of no	on-hazardo	us materials c	overed by th	nis manifest.	•				
Ţ	Printed Name	•	Signa	ture					Month	Day	Year
	Junhot.	toist.		ا ارجون <u>-</u>	June -	1. Jan 1	<u>is de la </u>		14	<i>.</i>	14
	White TREATMENT STORAGE DISPO	SEAL FACILITY CORY	Divo	GENERATOR	#2 CODY	1.5	Vo	llow- GENERA	TOP #1 COP	v	

Gold- TRANSPORTER #1 COPY

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Date Received		
	State Use Only	

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

Area Code	Telephone Number	Contact Person
843	228-7317	Craig Ehde
City	State	Zip Code
Beaufort,	South Carolina	29904-5001
P.O. Box 55001 Mailing Address		
	ndividual, Public Agency, Other)	
	anding Officer Attn: N	REAO (Craig Ehde)

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. #	
	ry Housing Area, Marine Corps Air Station, Beaufort, SC
Facility Name or Company	Site Identifier
477 Dogwood Drive Street Address or State Roa	, Laurel Bay Military Housing Area d (as applicable)
Beaufort,	Beaufort
City	County

Attachment 2

III. INSURANCE INFORMATION

Insurance Statement
The petroleum release reported to DHEC on at Permit ID Number may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.
Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES NO (check one)
If you answered YES to the above question, please complete the following information:
My policy provider is: The policy deductible is: The policy limit is:
If you have this type of insurance, please include a copy of the policy with this report.
IV. REQUEST FOR SUPERB FUNDING I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)
V. CERTIFICATION (To be signed by the UST owner)
I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete. Name (Type or print.)
Signature
To be completed by Notary Public:
Sworn before me this day of, 20
(Name)
Notary Public for the state of Please affix State seal if you are commissioned outside South Carolina

	477Dogwood-2
Product(ex. Gas, Kerosene)	Heating oil
Capacity(ex. 1k, 2k)	
Age	Late 1950s
Construction Material(ex. Steel, FRP)	Steel
Month/Year of Last Use	Mid 1980s
Depth (ft.) To Base of Tank	5'8"
Spill Prevention Equipment Y/N	No
Overfill Prevention Equipment Y/N	No
Method of Closure Removed/Filled	Removed
Date Tanks Removed/Filled	2/3/2015
Visible Corrosion or Pitting Y/N	Yes
Visible Holes Y/N	Yes Yes
그게 하고 있는데 그렇게 되었다면서 그 취상 다양을 하는데 그는 그렇게 하는데 이렇게 하는데 하지만 되었다.	d from the ground (attach disposal manifests) ed from the ground, cleaned and recycl
See Attachment "A".	

VII. PIPING INFORMATION

	Steel
Construction Material(ex. Steel, FRP)	& Copper
Distance from UST to Dispenser	N/A
Number of Dispensers	N/A
Type of System Pressure or Suction	Suction
Was Piping Removed from the Ground? Y/N	No
Visible Corrosion or Pitting Y/N	Yes
Visible Holes Y/N	No
Age	Late 1950s
If any corrosion, pitting, or holes were observed,	describe the location and extent for each pr
Corrosion and pitting were foun	
Corrosion and pitting were foun pipe. Copper supply and return	
pipe. Copper supply and return	lines were sound.
	RIPTION AND HISTORY
VIII. BRIEF SITE DESCI The USTs at the residences are cand formerly contained fuel oil	RIPTION AND HISTORY onstructed of single wall stefor heating. These USTs were
VIII. BRIEF SITE DESCI	RIPTION AND HISTORY onstructed of single wall stefor heating. These USTs were
VIII. BRIEF SITE DESCI The USTs at the residences are cand formerly contained fuel oil installed in the late 1950s and	RIPTION AND HISTORY onstructed of single wall stefor heating. These USTs were last used in the mid 1980s.
VIII. BRIEF SITE DESCI The USTs at the residences are cand formerly contained fuel oil installed in the late 1950s and	RIPTION AND HISTORY onstructed of single wall stefor heating. These USTs were last used in the mid 1980s.
VIII. BRIEF SITE DESCI The USTs at the residences are cand formerly contained fuel oil	RIPTION AND HISTORY onstructed of single wall stefor heating. These USTs were last used in the mid 1980s.

IX. SITE CONDITIONS

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map.		Х	
11 yes, maleute depth and location on the site map.	+		
B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells?		Х	
If yes, indicate location on site map and describe the odor (strong, mild, etc.)			
C. Was water present in the UST excavation, soil borings, or trenches?		Х	
If yes, how far below land surface (indicate location and depth)?			
D. Did contaminated soils remain stockpiled on site after closure?		Х	
If yes, indicate the stockpile location on the site map.			
Name of DHEC representative authorizing soil removal:			
E. Was a petroleum sheen or free product detected on any excavation or boring waters?		х	
If yes, indicate location and thickness.			

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

В.

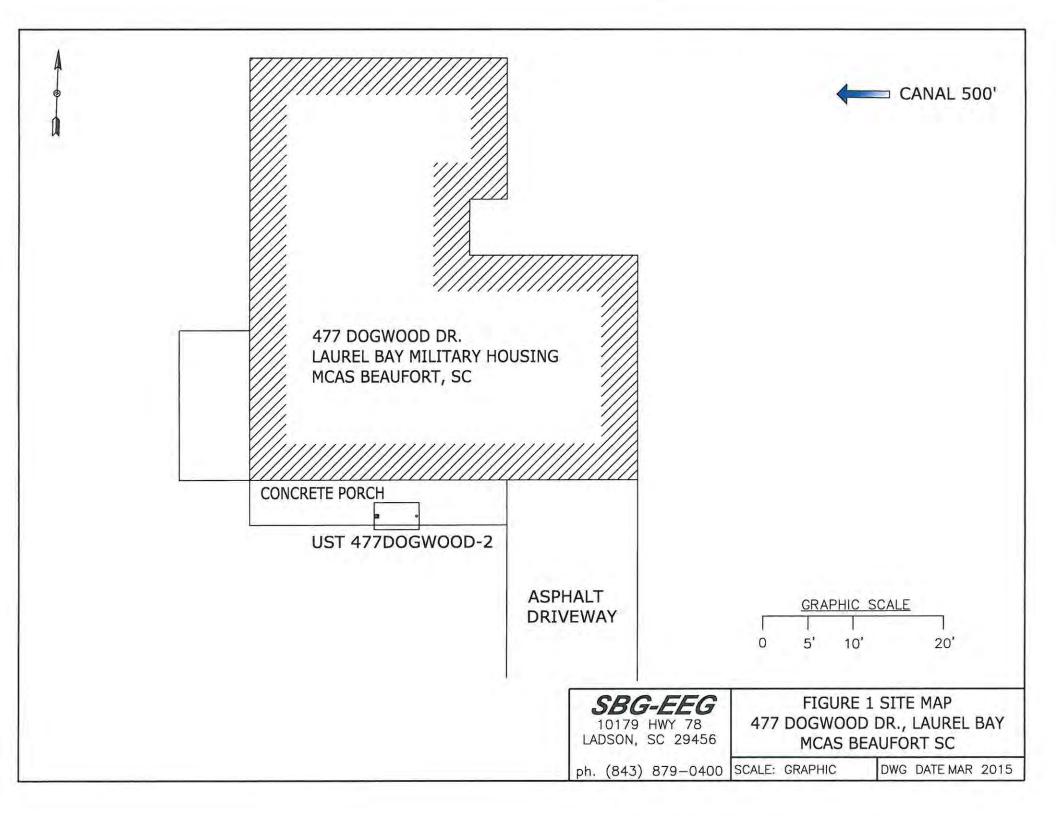
Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA#
477 Dogwood2	Excav at fill end	Soil	Sandy	5'8"	2/3/15 1500 hrs	P. Shaw	
8	e						
9							
10							
11							
12							
13							
14							
15							
16							
17							JI:
18							T
19							
20							

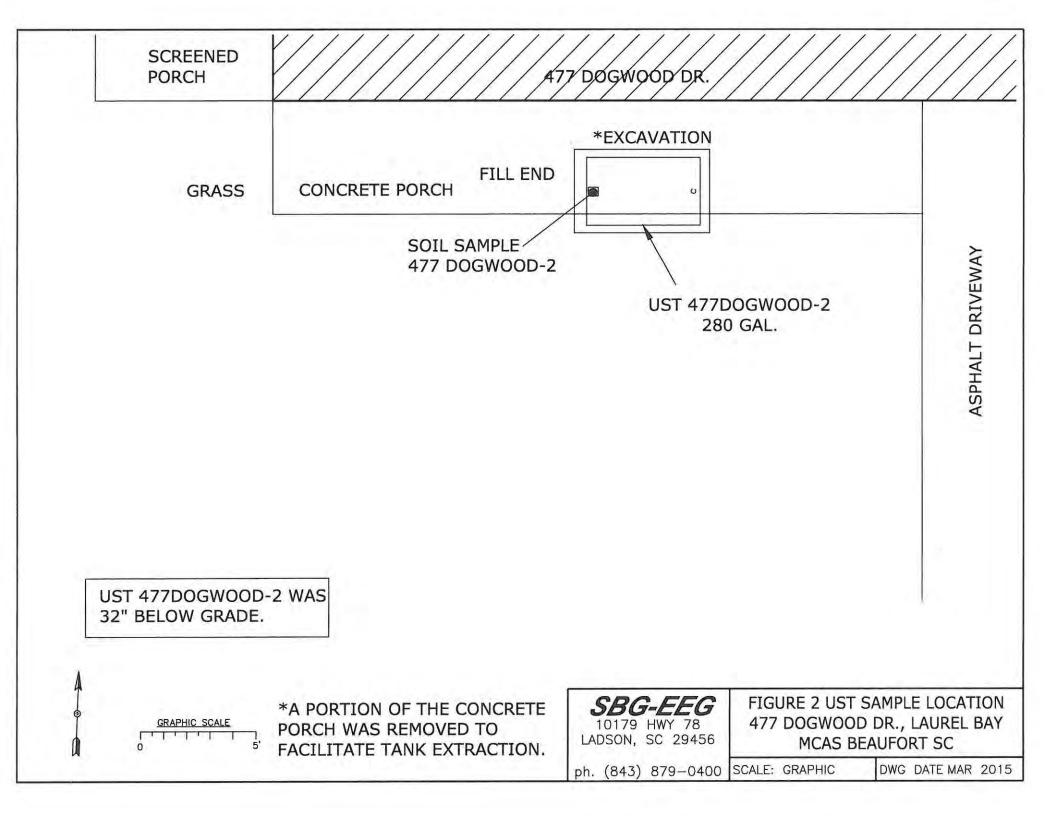
^{* =} Depth Below the Surrounding Land Surface

XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280
and SC DHEC Assessment Guidelines. Sample containers were prepared by the
testing laboratory. The grab method was utilized to fill the sample
containers leaving as little head space as possible and immediately
capped. Soil samples were extracted from area below tank. The
samples were marked, logged, and immediately placed in a sample cooler
packed with ice to maintain an approximate temperature of 4 degrees
Centigrade. Tools were thoroughly cleaned and decontaminated with
the seven step decon process after each use. The samples remained in
custody of SBG-EEG, Inc. until they were transferred to Test America
Incorporated for analysis as documented in the Chain of Custody Record.


XII. RECEPTORS


Yes No A. Are there any lakes, ponds, streams, or wetlands located within *X 1000 feet of the UST system? *Stormwater drainage canal If yes, indicate type of receptor, distance, and direction on site map. B. Are there any public, private, or irrigation water supply wells within X 1000 feet of the UST system? If yes, indicate type of well, distance, and direction on site map. C. Are there any underground structures (e.g., basements) X Located within 100 feet of the UST system? If yes, indicate type of structure, distance, and direction on site map. D. Are there any underground utilities (e.g., telephone, electricity, gas, *X water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination? *Sewer, water, electricity cable, fiber optic & If yes, indicate the type of utility, distance, and direction on the site map. E. Has contaminated soil been identified at a depth less than 3 feet X below land surface in an area that is not capped by asphalt or concrete? If yes, indicate the area of contaminated soil on the site map.

XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 477Dogwood-2.

Picture 2: Wastewater being pumped from the tank.

Picture 3:UST 477Dogwood-2 being removed from the excavation.

Picture 4: Site after completion of tank removal.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

CoC UST	477Dogwood-2			
Benzene	ND			
Toluene	ND			
Ethylbenzene	ND			
Xylenes	ND			
Naphthalene	ND			
Benzo (a) anthracene	ND			
Benzo (b) fluoranthene	ND			
Benzo (k) fluoranthene	ND			
Chrysene	ND			
Dibenz (a, h) anthracene	ND			
TPH (EPA 3550)			1	
CoC				
Benzene	1 1 1 1 1 1 1			
Toluene				
Ethylbenzene				
Xylenes				
Naphthalene				
Benzo (a) anthracene				
Benzo (b) fluoranthene				
Benzo (k) fluoranthene				
Chrysene				
Dibenz (a, h) anthracene				
TPH (EPA 3550)				

SUMMARY OF ANALYSIS RESULTS (cont'd)

Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	W-1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
MTBE	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10		1		
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

Visit us at:

www.testamericainc.com

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-72080-1 Client Project/Site: Laurel Bay Housing Project

For:

Small Business Group Inc. 10179 Highway 78 Ladson, South Carolina 29456

Attn: Tom McElwee

Kuth Haye

Authorized for release by: 2/13/2015 11:24:10 AM

Ken Hayes, Project Manager II (615)301-5035

ken.hayes@testamericainc.com

parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

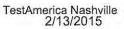
Results relate only to the items tested and the sample(s) as received by the laboratory.

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

Table of Contents

Cover Page	1
able of Contents	2
Sample Summary	3
Case Narrative	
Definitions	
Client Sample Results	3
QC Sample Results	3
QC Association	12
Chronicle	13
Method Summary	14
	15
Chain of Custody	16
Receipt Checklists	18



Sample Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-72080-1

 Lab Sample ID
 Client Sample ID

 490-72080-1
 477 Dogwood - 2

 490-72080-2
 309 Ash

 Matrix
 Collected
 Received

 Soil
 02/03/15 15:00
 02/07/15 08:30

 Soil
 02/05/15 14:15
 02/07/15 08:30

П

Case Narrative

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-72080-1

Job ID: 490-72080-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-72080-1

Comments

No additional comments.

Receipt

The samples were received on 2/7/2015 8:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.1° C.

GC/MS VOA

Method(s) 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 226828 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Definitions/Glossary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-72080-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

F1 MS and/or MSD Recovery exceeds the control limits

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery

CFL Contains Free Liquid

CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Client Sample Results

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-72080-1

Client Sample ID: 477 Dogwood - 2

Date Collected: 02/03/15 15:00 Date Received: 02/07/15 08:30 Lab Sample ID: 490-72080-1

Matrix: Soil

Percent Solids: 76.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	24240100000	0.00256	0.000858	mg/Kg	\$11	02/03/15 15:00	02/11/15 19:01	1
Ethylbenzene	ND		0.00256	0.000858	mg/Kg	12	02/03/15 15:00	02/11/15 19:01	1
Naphthalene	ND		0.00640	0.00218	mg/Kg	**	02/03/15 15:00	02/11/15 19:01	1
Toluene	ND		0.00256	0.000948	mg/Kg	n	02/03/15 15:00	02/11/15 19:01	1
Xylenes, Total	ND		0.00384	0.000858	mg/Kg	21	02/03/15 15:00	02/11/15 19:01	đ
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		70 - 130				02/03/15 15:00	02/11/15 19:01	1
4-Bromofluorobenzene (Surr)	102		70 - 130				02/03/15 15:00	02/11/15 19:01	1
Dibromofluoromethane (Surr)	112		70 - 130				02/03/15 15:00	02/11/15 19:01	1
Toluene-d8 (Surr)	96		70 - 130				02/03/15 15:00	02/11/15 19:01	1
Method: 8270D - Semivolatile	Organic Compou	nds (GC/M	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0869	0.0130	mg/Kg	群	02/09/15 10:52	02/10/15 19:35	1
Acenaphthylene	ND		0.0869	0.0117	mg/Kg	n	02/09/15 10:52	02/10/15 19:35	1
Anthracene	ND		0.0869	0.0117	mg/Kg	n	02/09/15 10:52	02/10/15 19:35	1
Benzo[a]anthracene	ND		0.0869	0.0195	mg/Kg	a	02/09/15 10:52	02/10/15 19:35	1
Benzo[a]pyrene	ND		0.0869	0.0156	mg/Kg	n	02/09/15 10:52	02/10/15 19:35	1
Benzo[b]fluoranthene	ND		0.0869	0.0156	mg/Kg	13	02/09/15 10:52	02/10/15 19:35	1
Benzo[g,h,i]perylene	ND		0.0869	0.0117	mg/Kg	M	02/09/15 10:52	02/10/15 19:35	1
Benzo[k]fluoranthene	ND		0.0869	0.0182	mg/Kg	a	02/09/15 10:52	02/10/15 19:35	1
1-Methylnaphthalene	ND		0.0869	0.0182	mg/Kg	4.7	02/09/15 10:52	02/10/15 19:35	1
Pyrene	ND		0.0869	0.0156	mg/Kg	7	02/09/15 10:52	02/10/15 19:35	1
Phenanthrene	ND		0.0869	0.0117	mg/Kg	a	02/09/15 10:52	02/10/15 19:35	1
Chrysene	ND		0.0869	0.0117	mg/Kg	Ħ	02/09/15 10:52	02/10/15 19:35	1
Dibenz(a,h)anthracene	ND		0.0869	0.00908	mg/Kg	= €	02/09/15 10:52	02/10/15 19:35	1
Fluoranthene	ND		0.0869	0.0117	mg/Kg	12	02/09/15 10:52	02/10/15 19:35	1
Fluorene	ND		0.0869	0.0156	mg/Kg	1/4	02/09/15 10:52	02/10/15 19:35	1
Indeno[1,2,3-cd]pyrene	ND		0.0869	0.0130	mg/Kg	11	02/09/15 10:52	02/10/15 19:35	1
Naphthalene	ND		0.0869	0.0117	mg/Kg	Ħ	02/09/15 10:52	02/10/15 19:35	1
2-Methylnaphthalene	ND		0.0869	0.0207	mg/Kg	п	02/09/15 10:52	02/10/15 19:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	DII Fac
2-Fluorobiphenyl (Surr)	58		29 - 120				02/09/15 10:52	02/10/15 19:35	1
Terphenyl-d14 (Surr)	64		13 - 120				02/09/15 10:52	02/10/15 19:35	1
Nitrobenzene-d5 (Surr)	51		27 - 120				02/09/15 10:52	02/10/15 19:35	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	77		0.10	0.10	%			02/07/15 16:40	1

Client Sample Results

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-72080-1

Lab Sample ID: 490-72080-2

Matrix: Soil

Percent Solids: 85.4

Client Sample ID: 309 As	h
Date Collected: 02/05/15 14:15	

Date Received: 02/07/15 08:30

Percent Solids

Method: 8260B - Volatile Orga Analyte	A STATE OF THE PARTY OF THE PAR	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.000671	mg/Kg	n	02/05/15 14:15	02/11/15 19:29	1
Ethylbenzene	ND		0.00200	0.000671	mg/Kg	17	02/05/15 14:15	02/11/15 19:29	1
Naphthalene	ND		0.00501	0.00170	mg/Kg	n	02/05/15 14:15	02/11/15 19:29	1
Toluene	ND		0.00200	0.000741	mg/Kg	X is	02/05/15 14:15	02/11/15 19:29	1
Xylenes, Total	ND		0.00300	0.000671	mg/Kg	\$	02/05/15 14:15	02/11/15 19:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		70 - 130				02/05/15 14:15	02/11/15 19:29	1
4-Bromofluorobenzene (Surr)	105		70 - 130				02/05/15 14:15	02/11/15 19:29	1
Dibromofluoromethane (Surr)	103		70 - 130				02/05/15 14:15	02/11/15 19:29	1
Toluene-d8 (Surr)	94		70 - 130				02/05/15 14:15	02/11/15 19:29	1
Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS	5)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0774	0.0116	mg/Kg	n	02/09/15 10:52	02/10/15 19:57	1
Acenaphthylene	ND		0.0774	0.0104	mg/Kg	E	02/09/15 10:52	02/10/15 19:57	1
Anthracene	ND		0.0774	0.0104	mg/Kg	n	02/09/15 10:52	02/10/15 19:57	1
Benzo[a]anthracene	ND		0.0774	0.0173	mg/Kg	n	02/09/15 10:52	02/10/15 19:57	1
Benzo[a]pyrene	ND		0.0774	0.0139	mg/Kg	n	02/09/15 10:52	02/10/15 19:57	1
Benzo[b]fluoranthene	ND		0.0774	0.0139	mg/Kg	3-1	02/09/15 10:52	02/10/15 19:57	1
Benzo[g,h,i]perylene	ND		0.0774	0.0104	mg/Kg	2.4	02/09/15 10:52	02/10/15 19:57	1
Benzo[k]fluoranthene	ND		0.0774	0.0162	mg/Kg	12	02/09/15 10:52	02/10/15 19:57	1
1-Methylnaphthalene	ND		0.0774	0.0162	mg/Kg	2.1	02/09/15 10:52	02/10/15 19:57	1
Pyrene	ND		0.0774	0.0139	mg/Kg	44	02/09/15 10:52	02/10/15 19:57	1
Phenanthrene	ND		0.0774	0.0104	mg/Kg	70.	02/09/15 10:52	02/10/15 19:57	1
Chrysene	ND		0.0774	0.0104	mg/Kg	24	02/09/15 10:52	02/10/15 19:57	1
Dibenz(a,h)anthracene	ND		0.0774	0.00809	mg/Kg	n	02/09/15 10:52	02/10/15 19:57	1
Fluoranthene	ND		0.0774	0.0104	mg/Kg	n	02/09/15 10:52	02/10/15 19:57	1
Fluorene	ND		0.0774	0.0139	mg/Kg	Ħ	02/09/15 10:52	02/10/15 19:57	1
Indeno[1,2,3-cd]pyrene	ND		0.0774	0.0116	mg/Kg	12	02/09/15 10:52	02/10/15 19:57	1
Naphthalene	ND		0.0774	0.0104	mg/Kg	31	02/09/15 10:52	02/10/15 19:57	1
2-Methylnaphthalene	ND		0.0774	0.0185	mg/Kg	n	02/09/15 10:52	02/10/15 19:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	54		29 - 120				02/09/15 10:52	02/10/15 19:57	1
Terphenyl-d14 (Surr)	61		13 - 120				02/09/15 10:52	02/10/15 19:57	1
Nitrobenzene-d5 (Surr)	48		27 - 120				02/09/15 10:52	02/10/15 19:57	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

02/07/15 16:40

0.10

0.10 %

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-72080-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: 490-72069-D-14-A MS

Matrix: Solid

Analysis Batch: 226828

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 226230

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	ND		0.0571	0.05973		mg/Kg	11	105	31 - 143
Ethylbenzene	ND		0.0571	0.05971		mg/Kg	q	105	23 - 161
Naphthalene	ND		0.0571	0.06535		mg/Kg	n	114	10 - 176
Toluene	ND		0.0571	0.05735		mg/Kg	Ti-	100	30 - 155
Xylenes, Total	ND		114	0.1223	F1	mg/Kg	n	0.1	25 - 162

Limits

70 - 130 70 - 130

70 - 130

70 - 130

Lab Sample ID: 490-72069-D-14-B MSD

Matrix: Solid

Toluene-d8 (Surr)

Surrogate

Analysis Batch: 226828

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 226230

Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
ND		0.0578	0.06024		mg/Kg	35	104	31 - 143	1	50
ND		0.0578	0.06132		mg/Kg	24	106	23 - 161	3	50
ND		0.0578	0.06261		mg/Kg	5	108	10 - 176	4	50
ND		0.0578	0.05925		mg/Kg	31	103	30 - 155	3	50
ND		116	0.1247	F1	mg/Kg	π	0.1	25 - 162	2	50
	Result ND ND ND ND	ND ND ND	Result Qualifier Added ND 0.0578 ND 0.0578 ND 0.0578 ND 0.0578 ND 0.0578	Result Qualifier Added Result ND 0.0578 0.06024 ND 0.0578 0.06132 ND 0.0578 0.06261 ND 0.0578 0.05925	Result Qualifier Added Result Qualifier ND 0.0578 0.06024 ND 0.0578 0.06132 ND 0.0578 0.06261 ND 0.0578 0.05925	Result Qualifier Added Result Qualifier Unit ND 0.0578 0.06024 mg/Kg ND 0.0578 0.06132 mg/Kg ND 0.0578 0.06261 mg/Kg ND 0.0578 0.05925 mg/Kg	Result Qualifier Added Result Qualifier Unit D ND 0.0578 0.06024 mg/Kg 35 ND 0.0578 0.06132 mg/Kg 35 ND 0.0578 0.06261 mg/Kg 45 ND 0.0578 0.05925 mg/Kg 47	Result Qualifier Added Result Qualifier Unit D %Rec ND 0.0578 0.06024 mg/Kg 3 104 ND 0.0578 0.06132 mg/Kg 4 106 ND 0.0578 0.06261 mg/Kg 6 108 ND 0.0578 0.05925 mg/Kg 3 103	Result Qualifier Added Result Qualifier Unit D %Rec Limits ND 0.0578 0.06024 mg/Kg 3 104 31 - 143 ND 0.0578 0.06132 mg/Kg 3 106 23 - 161 ND 0.0578 0.06261 mg/Kg 6 108 10 - 176 ND 0.0578 0.05925 mg/Kg 3 103 30 - 155	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD ND 0.0578 0.06024 mg/Kg 3 104 31 - 143 1 ND 0.0578 0.06132 mg/Kg 3 106 23 - 161 3 ND 0.0578 0.06261 mg/Kg 6 108 10 - 176 4 ND 0.0578 0.05925 mg/Kg 3 103 30 - 155 3

MSD MSD

MS MS

%Recovery Qualifier

99

101

103

96

%Recovery Qualifier	Limits
97	70 - 130
101	70 - 130
103	70 - 130
94	70 - 130
	97 101 103

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 226828

Lab Sample ID: MB 490-226828/8

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.000670	mg/Kg			02/11/15 12:48	1
Ethylbenzene	ND		0.00200	0.000670	mg/Kg			02/11/15 12:48	1
Naphthalene	ND		0.00500	0.00170	mg/Kg			02/11/15 12:48	1
Toluene	ND		0.00200	0.000740	mg/Kg			02/11/15 12:48	1
Xylenes, Total	ND		0.00300	0.000670	mg/Kg			02/11/15 12:48	1
	MB	MB							

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118	70 - 130		02/11/15 12:48	1
4-Bromofluorobenzene (Surr)	102	70 - 130		02/11/15 12:48	1
Dibromofluoromethane (Surr)	110	70 - 130		02/11/15 12:48	1
Toluene-d8 (Surr)	100	70 - 130		02/11/15 12:48	1

TestAmerica Nashville

Page 8 of 18

2/13/2015

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-72080-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 490-226828/4

Matrix: Solid

Analysis Batch: 226828

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LUS	LUS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.0500	0.05219		mg/Kg		104	75 - 127
Ethylbenzene	0.0500	0.04995		mg/Kg		100	80 - 134
Naphthalene	0.0500	0.05366		mg/Kg		107	69 - 150
Toluene	0.0500	0.04864		mg/Kg		97	80 - 132
Xylenes, Total	0.100	0.1037		mg/Kg		104	80 - 137

LCS LCS Surrogate %Recovery Qualifier Limits 70 - 130 1,2-Dichloroethane-d4 (Surr) 114 4-Bromofluorobenzene (Surr) 99 70 - 130 Dibromofluoromethane (Surr) 109 70 - 130 Toluene-d8 (Surr) 94 70 - 130

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-226322/1-A

Matrix: Solid

Analysis Batch: 226554

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 226322

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0670	0.0100	mg/Kg		02/09/15 10:52	02/10/15 12:05	1
Acenaphthylene	ND		0.0670	0.00900	mg/Kg		02/09/15 10:52	02/10/15 12:05	1
Anthracene	ND		0.0670	0.00900	mg/Kg		02/09/15 10:52	02/10/15 12:05	1
Benzo[a]anthracene	ND		0.0670	0.0150	mg/Kg		02/09/15 10:52	02/10/15 12:05	1
Benzo[a]pyrene	ND		0.0670	0.0120	mg/Kg		02/09/15 10:52	02/10/15 12:05	1
Benzo[b]fluoranthene	ND		0.0670	0.0120	mg/Kg		02/09/15 10:52	02/10/15 12:05	1
Benzo[g,h,i]perylene	ND		0.0670	0.00900	mg/Kg		02/09/15 10:52	02/10/15 12:05	1
Benzo[k]fluoranthene	ND		0.0670	0.0140	mg/Kg		02/09/15 10:52	02/10/15 12:05	1
1-Methylnaphthalene	ND		0.0670	0.0140	mg/Kg		02/09/15 10:52	02/10/15 12:05	1
Pyrene	ND		0.0670	0.0120	mg/Kg		02/09/15 10:52	02/10/15 12:05	1
Phenanthrene	ND		0.0670	0.00900	mg/Kg		02/09/15 10:52	02/10/15 12:05	1
Chrysene	ND		0.0670	0.00900	mg/Kg		02/09/15 10:52	02/10/15 12:05	1
Dibenz(a,h)anthracene	ND		0.0670	0.00700	mg/Kg		02/09/15 10:52	02/10/15 12:05	1
Fluoranthene	ND		0.0670	0.00900	mg/Kg		02/09/15 10:52	02/10/15 12:05	1
Fluorene	ND		0.0670	0.0120	mg/Kg		02/09/15 10:52	02/10/15 12:05	1
Indeno[1,2,3-cd]pyrene	ND		0.0670	0.0100	mg/Kg		02/09/15 10:52	02/10/15 12:05	1
Naphthalene	ND		0.0670	0.00900	mg/Kg		02/09/15 10:52	02/10/15 12:05	1
2-Methylnaphthalene	ND		0.0670	0.0160	mg/Kg		02/09/15 10:52	02/10/15 12:05	1

	MB	MB
rrogate	%Recovery	Qua

Surrogate	%Recovery	Qualifier	Limits	Prepared
2-Fluorobiphenyl (Surr)	83		29 - 120	02/09/15 10:52
Terphenyl-d14 (Surr)	81		13 - 120	02/09/15 10:52
Nitrobenzene-d5 (Surr)	78		27 - 120	02/09/15 10:52

TestAmerica Nashville

Analyzed

02/10/15 12:05

02/10/15 12:05

02/10/15 12:05

Dil Fac

2/13/2015 Page 9 of 18

LCS LCS

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-72080-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 490-226322/2-A

Matrix: Solid

Analysis Batch: 226554

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 226322

	Spike	LUS	LUS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthylene	1.67	1.381		mg/Kg		83	38 - 120
Anthracene	1.67	1.337		mg/Kg		80	46 - 124
Benzo[a]anthracene	1.67	1.451		mg/Kg		87	45 - 120
Benzo[a]pyrene	1.67	1.393		mg/Kg		84	45 - 120
Benzo[b]fluoranthene	1.67	1.349		mg/Kg		81	42 - 120
Benzo[g,h,i]perylene	1.67	1.675		mg/Kg		101	38 - 120
Benzo[k]fluoranthene	1.67	1.425		mg/Kg		85	42 - 120
1-Methylnaphthalene	1.67	1.350		mg/Kg		81	32 - 120
Pyrene	1.67	1.553		mg/Kg		93	43 - 120
Phenanthrene	1.67	1.282		mg/Kg		77	45 - 120
Chrysene	1.67	1.395		mg/Kg		84	43 - 120
Dibenz(a,h)anthracene	1.67	1.629		mg/Kg		98	32 - 128
Fluoranthene	1.67	1.361		mg/Kg		82	46 - 120
Fluorene	1.67	1.386		mg/Kg		83	42 - 120
Indeno[1,2,3-cd]pyrene	1.67	1.583		mg/Kg		95	41 - 121
Naphthalene	1.67	1.321		mg/Kg		79	32 - 120
2-Methylnaphthalene	1.67	1.388		mg/Kg		83	28 - 120

LCS LCS

Surrogate	%Recovery Qualifier	Limits
2-Fluorobiphenyl (Surr)	77	29 - 120
Terphenyl-d14 (Surr)	90	13 - 120
Nitrobenzene-d5 (Surr)	76	27 - 120

Lab Sample ID: LCSD 490-226322/3-A

Matrix: Solid

Analysis Batch: 226554

Client Sample	ID: Lab	Control Sample Dup	
---------------	---------	--------------------	--

Prep Type: Total/NA

Prep Batch: 226322

Allalysis Datch. 220004							The state of the state of		
a management and a second	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthylene	1.67	1.387		mg/Kg		83	38 - 120	0	50
Anthracene	1.67	1.298		mg/Kg		78	46 - 124	3	49
Benzo[a]anthracene	1.67	1.441		mg/Kg		86	45 - 120	1	50
Benzo[a]pyrene	1.67	1.388		mg/Kg		83	45 - 120	0	50
Benzo[b]fluoranthene	1.67	1.227		mg/Kg		74	42 - 120	9	50
Benzo[g,h,i]perylene	1.67	1.458		mg/Kg		88	38 - 120	14	50
Benzo[k]fluoranthene	1.67	1.204		mg/Kg		72	42 - 120	17	45
1-Methylnaphthalene	1.67	1.373		mg/Kg		82	32 - 120	2	50
Pyrene	1.67	1.290		mg/Kg		77	43 - 120	18	50
Phenanthrene	1.67	1.283		mg/Kg		77	45 - 120	0	50
Chrysene	1.67	1.383		mg/Kg		83	43 - 120	1	49
Dibenz(a,h)anthracene	1.67	1.426		mg/Kg		86	32 - 128	13	50
Fluoranthene	1.67	1.386		mg/Kg		83	46 - 120	2	50
Fluorene	1.67	1.446		mg/Kg		87	42 - 120	4	50
Indeno[1,2,3-cd]pyrene	1.67	1.396		mg/Kg		84	41 - 121	13	50
Naphthalene	1.67	1.323		mg/Kg		79	32 - 120	0	50
2-Methylnaphthalene	1.67	1.357		mg/Kg		81	28 - 120	2	50

TestAmerica Nashville

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-72080-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 490-226322/3-A

Matrix: Solid

Analysis Batch: 226554

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 226322

Client Sample ID: Duplicate

Prep Type: Total/NA

	LUSD LUS	SU
Surrogate	%Recovery Qua	alifier Limits
2-Fluorobiphenyl (Surr)	77	29 - 120
Terphenyl-d14 (Surr)	72	13 - 120
Nitrobenzene-d5 (Surr)	68	27 - 120

Lab Sample ID: 490-72075-D-2 DU

Matrix: Solid

Analysis Batch: 226186

The state of the s	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Solids	84		84		%		0	20

QC Association Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-72080-1

GC/MS VOA

Prep B	atc	h: 2	26228
--------	-----	------	-------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-72080-1	477 Dogwood - 2	Total/NA	Soil	5035	
490-72080-2	309 Ash	Total/NA	Soil	5035	

Prep Batch: 226230

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-72069-D-14-A MS	Matrix Spike	Total/NA	Solid	5035	
490-72069-D-14-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 226828

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-72069-D-14-A MS	Matrix Spike	Total/NA	Solid	8260B	226230
490-72069-D-14-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B	226230
490-72080-1	477 Dogwood - 2	Total/NA	Soil	8260B	226228
490-72080-2	309 Ash	Total/NA	Soil	8260B	226228
LCS 490-226828/4	Lab Control Sample	Total/NA	Solid	8260B	
MB 490-226828/8	Method Blank	Total/NA	Solid	8260B	

GC/MS Semi VOA

Prep Batch: 226322

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-72080-1	477 Dogwood - 2	Total/NA	Soil	3550C	
490-72080-2	309 Ash	Total/NA	Soil	3550C	
LCS 490-226322/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 490-226322/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
MB 490-226322/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 226554

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-72080-1	477 Dogwood - 2	Total/NA	Soil	8270D	226322
490-72080-2	309 Ash	Total/NA	Soil	8270D	226322
LCS 490-226322/2-A	Lab Control Sample	Total/NA	Solid	8270D	226322
LCSD 490-226322/3-A	Lab Control Sample Dup	Total/NA	Solid	8270D	226322
MB 490-226322/1-A	Method Blank	Total/NA	Solid	8270D	226322

General Chemistry

Analysis Batch: 226186

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-72075-D-2 DU	Duplicate	Total/NA	Solid	Moisture	
490-72080-1	477 Dogwood - 2	Total/NA	Soil	Moisture	
490-72080-2	309 Ash	Total/NA	Soil	Moisture	

Lab Chronicle

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-72080-1

Lab Sample ID: 490-72080-1 Client Sample ID: 477 Dogwood - 2

Date Collected: 02/03/15 15:00 Date Received: 02/07/15 08:30

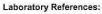
Client Sample ID: 309 Ash

Date Collected: 02/05/15 14:15

Date Received: 02/07/15 08:30

Matrix: Soil

Percent Solids: 76.8


	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.082 g	5.0 mL	226228	02/03/15 15:00	JLP	TAL NSH
Total/NA	Analysis	8260B		1	5.082 g	5.0 mL	226828	02/11/15 19:01	KKK	TAL NSH
Total/NA	Prep	3550C			30.11 g	1 mL	226322	02/09/15 10:52	LDC	TAL NSH
Total/NA	Analysis	8270D		1	30.11 g	1 mL	226554	02/10/15 19:35	SNR	TAL NSH
Total/NA	Analysis	Moisture		1			226186	02/07/15 16:40	LOJ	TAL NSH

Lab Sample ID: 490-72080-2

Matrix: Soil

Percent Solids: 85.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.847 g	5.0 mL	226228	02/05/15 14:15	JLP	TAL NSH
Total/NA	Analysis	8260B		1	5.847 g	5.0 mL	226828	02/11/15 19:29	KKK	TAL NSH
Total/NA	Prep	3550C			30.40 g	1 mL	226322	02/09/15 10:52	LDC	TAL NSH
Total/NA	Analysis	8270D		1	30.40 g	1 mL	226554	02/10/15 19:57	SNR	TAL NSH
Total/NA	Analysis	Moisture		1			226186	02/07/15 16:40	LOJ	TAL NSH

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Method Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-72080-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL NSH
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL NSH
Moisture	Percent Moisture	EPA	TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Certification Summary

Client: Small Business Group Inc.

Project/Site: Laurel Bay Housing Project

TestAmerica Job ID: 490-72080-1

Laboratory: TestAmerica Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
North Carolina (WW/SW)	State Prog	gram	4	387	12-31-15
The following analytes are	e included in this report, bu	it certification is not off	fered by the governing a	authority:	
Analysis Method	Prep Method	Matrix	Analy	e	
Moisture		Soil	Perce	nt Solids	
South Carolina	State Prog	gram	4	84009 (001)	02-28-15
The following analytes are	e included in this report, bu	it certification is not off	fered by the governing a	authority:	
Analysis Method	Prep Method	Matrix	Analy	te	
8270D	3550C	Soil	1-Met	hylnaphthalene	
Moisture		Soil	Perce	nt Solids	

COOLER RECEIPT FORM

Cooler Received/Opened On 2/7/2015 @ 8:30	
1. Tracking # 4012 (last 4 digits, FedEx)	2
Courier: FedEx IR Gun ID 17610176	
2. Temperature of rep. sample or temp blank when opened: L . Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen	1? YES NO NA
4. Were custody seals on outside of cooler? If yes, how many and where:	VESNONA
5. Were the seals intact, signed, and dated correctly?	YESNONA
6. Were custody papers inside cooler?	ESNONA
I certify that I opened the cooler and answered questions 1-6 (intial)	
7. Were custody seals on containers: YES NO and Intact	YESNO (NA
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pag	per Other None
9. Cooling process: (Ice Ice-pack Ice (direct contact) Dry ic	ce Other None
10. Did all containers arrive in good condition (unbroken)?	YES NONA
11. Were all container labels complete (#, date, signed, pres., etc)?	(YES)NONA
12. Did all container labels and tags agree with custody papers?	YES NO NA
13a. Were VOA vials received?	MESNONA
b. Was there any observable headspace present in any VOA vial?	YESNO. (NA
14. Was there a Trip Blank in this cooler? YES. NA If multiple coolers, seque	nce,#
I certify that I unloaded the cooler and answered questions 7-14 (intial)	77
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level	17 YESNO.NA
b. Did the bottle labels indicate that the correct preservatives were used	YESNOC.NA
16. Was residual chlorine present?	YESNO. NA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial	ATH
17. Were custody papers properly filled out (ink, signed, etc)?	YES NO NA
18. Did you sign the custody papers in the appropriate place?	PESNONA
19. Were correct containers used for the analysis requested?	YESNONA
20. Was sufficient amount of sample sent in each container?	YESNONA
I certify that I entered this project into LIMS and answered questions 17-20 (intial)	ATH
I certify that I attached a label with the unique LIMS number to each container (intial)	ATH
21. Were there Non-Conformance issues at login? YES (NO Was a NCM generated? YES.	(NO.#

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form Revised 11/28/12

Send QC with report Fax Results z TAT brabnat2 200 2 BUSH TAT (Pre-Schedule Yes Yes Compliance Monitoring? To assist us in using the proper analytical methods, is this work being conducted for **Enforcement Action?** Temperature Upon Receipt: 1 , (VOCs Free of Headspace? Project ID: Laurel Bay Housing Project aboratory Comments: regulatory purposes? Site State: SC **G0728 - HA9** TA Quote #: Project #: Time BTEX + Napth - 8260 FEDEX Hos Sludge 1040 Date Drinking Water Phone: 615-726-0177 Toll Free: 800-765-0980 Fax: 615-726-3404 Groundwater Office (Specify) McMnAviol None (Black Label) Method of Shipment: H₂SO, Plastic (Yellow Label) 843 (leds.J egnerO) HOsN 4 6 HNO₃ (Red Label) Fax No. 90] Fleld Filtered Composite Nashville Division 2960 Foster Creighton Nashville, TN 37204 Project Manager: Tom McElwee email: mcelwee@eeginc.net いてなら 0060 GLISP No. of Containers Shipped 1415 500 Telephone Number: 843.412.2097 Time Sampled Client Name/Account #: SBG - EEG # 2449 Address: 10179 Highway 78 City/State/Zip: Ladson, SC 29456 2/3/15 **TestAmerica** THE LEADER IN ENVIRONMENTAL TESTING Date Sampled Sampler Name: (Print) Sampler Signature: Moswood Sample ID / Description Special Instructions: Relinquished by: 309

10c: 490 72080

Page 17 of 18

Login Sample Receipt Checklist

Client: Small Business Group Inc.

Job Number: 490-72080-1

List Source: TestAmerica Nashville

Login Number: 72080

List Number: 1

Creator: Huskey, Adam

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ATTACHMENT A

UST Certificate of Disposal

CONTRACTOR

Small Business Group, Inc. 10179 Highway 78 Ladson, SC 29456

TEL (843) 879-0403 FAX (843) 879-0401

TANK ID & LOCATION

UST 477Dogwood-2, 477 Dogwood Drive, Laurel Bay Housing Area, MCAS Beaufort, S.C.

DISPOSAL LOCATION

Coastal Auto Salvage Co., Inc. 130 Laurel Bay Road Beaufort, S.C. 29906

TYPE OF TANK	SIZE (GAL)
Steel	280

CLEANING/DISPOSAL METHOD

The tank and piping were unearthed, cut open, cleaned with a pressure washer, cut into sections, and recycled.

DISPOSAL CERTIFICATION

I certify that the above tank, piping and equipment has been properly cleaned and disposed of.

(Name) (Date)

Appendix C Regulatory Correspondence

Catherine E. Heigel, Director

Promoting and protecting the health of the public and the environment

July 1, 2015

Commanding Officer
Attention: NREAO Mr. William A. Drawdy
United State Marine Corps Air Station
Post Office Box 55001
Beaufort, SC 29904-5001

RE: No Further Action

Laurel Bay Underground Storage Tank Assessment Reports for:

See attached sheet

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the referenced Underground Storage Tanks (USTs) Assessment Reports for the addresses listed above. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The Department has reviewed the referenced assessment reports and agrees there is no indication of soil or groundwater contamination on these properties, and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at kriegkm@dhec.sc.gov or 803-898-0255.

Sincerely,

Kent Krieg

Department of Defense Corrective Action Section

Bureau of Land and Waste Management

South Carolina Department of Health and Environmental Control

Cc: Russell Berry (via email)

Craig Ehde (via email) Bryan Beck (via email)

Catherine E. Heigel, Director

Promoting and protecting the health of the public and the environment

Attachment to: Krieg to Drawdy

Subject: NFA
Dated 7/1/2015

Laurel Bay Underground Storage Tank Assessment Reports for: (153 addresses/161 tanks)

111 BitCh 363 Aspen 364 Aspen 364 Aspen 364 Aspen 369 Aspen 369 Aspen 369 Aspen 373 Aspen 369 Aspen 373 Aspen 369 Aspen 373 Aspen 373 Aspen 373 Aspen 373 Aspen 374 Aspen 375 Aspen 376 Aspen 376 Aspen 377 Aspen 377 Aspen 378	111 Direct	262 Asman
131 Banyan 366 Aspen 134 Banyan 369 Aspen 145 Laurel Bay 373 Aspen 150 Laurel Bay 381 Aspen 153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 225 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 3	111 Birch	363 Aspen
134 Banyan 369 Aspen 145 Laurel Bay 373 Aspen 150 Laurel Bay 381 Aspen 153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	•	1
145 Laurel Bay 373 Aspen 150 Laurel Bay 381 Aspen 153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 466 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2		1
150 Laurel Bay 381 Aspen 153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 487 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	<u> </u>	
153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 284 Birch Tank 2 524 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2		
154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2		1
155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2		
200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2		ž
202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2		ž
203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2		J
208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	202 Balsam	420 Elderberry
210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	203 Balsam	424 Elderberry
211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	208 Balsam	435 Elderberry Tank 3
220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	210 Balsam	452 Elderberry
222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	211 Balsam	460 Elderberry
223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	220 Cypress	465 Dogwood
252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	222 Cypress	477 Laurel Bay
271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	223 Cypress	487Laurel Bay
271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	252 Beech Tank 2	513 Laurel Bay
284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	271 Beech Tank 1	519 Laurel Bay
284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	271 Beech Tank 2	524 Laurel Bay
308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	284 Birch Tank 1	535 Laurel Bay
311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	284 Birch Tank 2	553 Dahlia
312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	308 Ash	590 Aster
317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	311 Ash	591 Aster
318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	312 Ash	610 Dahlia
337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	317 Ash	612 Dahlia
351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2	318 Ash	628 Dahlia
351 Ash Tank 2 637 Dahlia Tank 2	337 Ash	636 Dahlia
	351 Ash Tank 1	637 Dahlia Tank 1
	351 Ash Tank 2	637 Dahlia Tank 2
355 Ash Tank 2 642 Dahlia Tank 1		
360 Aspen 642 Dahlia Tank 2	360 Aspen	

Laurel Bay Underground Storage Tank Assessment Reports for: (153 addresses/161 tanks) cont.

655 Camellia	920 Albacore
662 Camellia	922 Barracuda Tank 1
683 Camellia	922 Barracuda Tank 2
684 Camellia	924 Albacore
689 Abelia	925 Albacore
694 Abelia	926 Albacore
695 Abelia	930 Albacore
741 Blue Bell	931 Albacore
742 Blue Bell	933 Albacore
755 Althea	936 Albacore
757 Althea	938 Albacore
776 Laurel Bay	939 Albacore
777 Azalea	940 Albacore
779 Laurel Bay	1010 Foxglove
781 Laurel Bay	1066 Gardenia
802 Azalea	1068 Gardenia
816 Azalea	1071 Heather Tank 2
822 Azalea	1100 Iris Tank 2
823 Azalea	1128 Iris
825 Azalea	1178 Bobwhite
828 Azalea	1204 Cardinal
837 Azalea	1208 Cardinal
851 Dolphin	1209 Cardinal
856 Dolphin	1210 Cardinal
857 Dolphin	1215 Cardinal
861 Dolphin	1216 Cardinal
864 Dolphin	1217 Cardinal Tank 1
868 Dolphin	1217 Cardinal Tank 2
872 Dolphin	1233 Dove
879 Cobia	1244 Dove
886 Cobia	1250 Dove
888 Cobia	1252 Dove
889 Cobia	1254 Dove
901 Barracuda	1256 Dove
902 Barracuda	1258 Dove
903 Barracuda	1263 Dove
904 Barracuda	1269 Dove
909 Barracuda	1276 Dove
910 Barracuda	1283 Dove
914 Barracuda	1285 Dove
915 Barracuda	1288 Eagle

Laurel Bay Underground Storage Tank Assessment Reports for: (153 addresses/161 tanks) cont.

1296 Eagle	1330 Albatross
1307 Eagle	1331 Albatross
1321 Albatross	1333 Albatross
1322 Albatross	1334 Albatross
1327 Albatross	1335 Albatross
1328 Albatross	

August 3, 2016

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: No Further Action

Laurel Bay Underground Storage Tank Assessment Reports

Dated July 2015, November 2015

Dear Mr. Drawdy:

The South Carolina Department of Health and Environmental Control (the Department) received the Underground Storage Tanks (USTs) Assessment Reports for the addresses listed in the attachment. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seg., as amended).

The Department has reviewed the referenced assessment reports and agrees there is no indication of soil or groundwater contamination on these properties and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

Cc:

XIRTS

Bureau of Land and Waste Management

Laurel Petrus, Environmental Engineer Associate

Russell Berry, EQC Region 8 (via email) Bryan Beck, NAVFAC MIDATLANTIC (via email)

Craig Ehde (via email)

Attachment to: Petrus to Drawdy
Subject: No Further Action
Dated August 3, 2016

Laurel Bay Underground Assessment Reports for (28 addresses/29 tanks)

309 Ash	1001 Bobwhite
477 Dogwood Tank 2	1020 Foxglove
563 Dahlia	1063 Gardenia
659 Camellia	1065 Gardenia Tank 2
1213 Cardinal	1100 Iris Tank 3*
114 Banyan	1139 Iris
158 Cypress	1141 Iris Tank 2
459 Elderberry	1174 Bobwhite
611 Dahlia	1184 Bobwhite Tank 1
656 Camellia	1184 Bobwhite Tank 2
671 Camellia	1220 Cardinal
678 Camellia	1253 Dove
724 Bluebell	1332 Albatross
732 Bluebell	1387 Dove
934 Albacore	